Satic Scheduling
for Embedded Systems

L uciano Lavagno

University of Udine and Cadence Berkeley Labs

Joint work with:

Jordi Cortadella, Alex Kondratyev, Marc Massot,
SandraMoral, Claudio Passerone,

Alberto Sangiovanni-Vincentelli, Marco Sgroi,
Y osinori Watanabe

Outline

 Motivation

o Static Scheduling of dataflow networks
— schedulability
— code and data size optimization

e Quasi-Static Scheduling of process
networks using Petri nets
— Free Choice nets
— Non-Free-Choice nets

e Conclusions

Function-architecture co-design

. |
— \{4 <

Embedded Software Synthesis

Specification: concurrent functional netlist
(Kahn processes, dataflow actors, SDL processes, ...)

Software implementation:
(smaller) set of concurrent software tasks

Two sub-problems:

— Generate code for each task
(from code fragments of functional blocks)

— Schedule tasks dynamically
(to satisfy real-time constraints)

Goals:
— minimize real-time scheduling overhead
— maximize effectiveness of compilation

Datafl ow networks

o A little history

e Syntax and semantics
— actors, tokens and firings

o Scheduling of Static Dataflow
— static scheduling
— code generation
— buffer sizing
o Other Dataflow models
— Boolean Dataflow
— Dynamic Dataflow

Datafl ow networks

e Powerful formalism for data-dominated system
specification
 Partially-ordered model (no over-specification)
o Deterministic execution independent of
scheduling
e Usedfor
— simulation
— code generation (scheduling and memory allocation)
for Digital Signal Processors (HW and SW)

A bit of history

Kahn process networks (*58): formal model
Karp computation graphs (‘ 66). seminal work

Dennis Dataflow networks (* 75): programming language
for MIT DF machine

Lee' s Static Data Flow networks (‘ 86): efficient static
scheduling

Several recent implementations
(Ptolemy, Khoros, Grape, SPW, COSSAP, SystemStudio,
DSPStation, Simulink, ...)

| ntuitive semantics

o (Often stateless) actors perform computation

 Unbounded FIFOs perform communication via sequences
of tokens carrying values
— (matrix of) integer, float, fixed point
— Image of pixels,
o State implemented as self-loop
o Determinacy:
— unique output sequences given unigue input sequences
— Sufficient condition: blocking read
(process cannot test input queues for emptiness)

| ntuitive semantics

 Example: FIR filter
— single input sequence i(n)
— single output sequence o(n)
—o(n)=cl=*i(n) +c2*i(n-1)

Examples of Dataflow actors

o SDF: Static Dataflow: fixed number of
Input and output tokens

T
1 1 1024 1024 10 1

e BDF: Boolean Dataflow control token
determines number of consumed and
produced tokens

e -

Outline

 Motivation

o Static Scheduling of dataflow networks
— schedulability
— code and data size optimization

e Quasi-Static Scheduling of process
networks using Petri nets
— Free Choice nets
— Non-Free-Choice nets

e Conclusions

Satic scheduling of DF

o Key property of DF networks. output sequences do not
depend on firing sequence of actors

o SDF networks can be statically scheduled at compile-time
— execute an actor when it is known to be fireable
— no overhead due to sequencing of concurrency
— dtatic buffer sizing

o Different schedulesyield different
— codesize
— buffer size
— pipeline utilization

Satic Scheduling

.-um>
L
o Sequentialize concurrent operations as much as possible

e |ess communication overhead
(run-time task generation)

* better starting point for compilation
(straight-line code from function blocks)

[1] Must handle
e multi-rate communication

Satic scheduling of SDF

Based only on process graph (no functionality)
Network state: number of tokens in FIFOs

Objective: find schedule that isvalid, i1.e.:

— admissible
(only fires actors when fireable)

— periodic
(brings network back to initial state firing each actor at least
once)

Optimize cost function over admissible schedules

Balance equations

e Number of produced tokens must equal number of
consumed tokens on every edge

(D—)

» Repetitions (or firing) vector vsof schedule S: number of
firings of each actor in S

* VS(A) np: VS(B) Ne
must be satisfied for each edge

Balance equations

Y
P

« Balance for each edge:
— 3Vg(A)-vg(B)=0
— Vg(B) - vs(C) =0
— 2Vg(A) -vg(C)=0
— 2Vg(A) -vg(C)=0

Balance equations

3 -1 0
7@§ % m=0 1 -1
1) 1 2 0 -1
@ 2 0 -1
1 1
e Mvg=0
Iff Sisperiodic

e Full rank (asin this case)
* NO NON-zero solution
 No periodic schedule
(too many tokens accumulate on A->B or B->C)

Balance equations

@. 9
2 M:O 1 -1
1 N\ 2 0 -1
o : o
1 1

Non-full rank
e infinite solutions exist (linear space of dimension 1)

Any multipleof g=1|1 2 2|" satisfiesthe balance
equations

ABCBC and ABBCC are minimal valid schedules
ABABBCBCCC isnon-minimal valid schedule

Satic SDF scheduling

 Main SDF scheduling theorem (Lee * 86):

— A connected SDF graph with n actors has a
periodic schedule iff itstopology matrix M has
rank n-1

— If M hasrank n-1 then there exists a unique
smallest integer solution g to

Mq=0

From repetition vector to schedule

* Repeatedly schedule fireable actors up to number
of times in repetition vector

q=l1 2 2f (A
N
&

e Canfind either ABCBC or ABBCC

 |f deadlock before original state, no valid schedule
exists (Lee ‘86)

From schedul e to Implementation

e Static scheduling used for:

— behavioral ssmulation of DF code generation
for DSP

— HW synthesis (Cathedral, Lager, ...)

* |ssuesin code generation
— execution speed (pipelining, vectorization)
— code size minimization

— data memory size minimization (allocation to
FIFOs)

— processor or functional unit allocation

Outline

 Motivation

o Static Scheduling of dataflow networks
— schedulability
— code and data size optimization

e Quasi-Static Scheduling of process
networks using Petri nets
— Free Choice nets
— Non-Free-Choice nets

e Conclusions

Compilation optimization

e Assumption: code stitching
(chaining custom code for each actor)

* More efficient than C compiler for DSP
e Comparable to hand-coding in some cases

o Explicit parallelism, no artificial control
dependencies

* Main problem: memory and processor/FU
allocation depends on scheduling, and vice-
versa

Code size minimization

o Assumptions (based on DSP architecture):
— subroutine calls expensive
— fixed iteration loops are cheap
(“zero-overhead loops’)

* Global optimum: single appearance schedule

e.g. ABCBC -> A (2BC), ABBCC -> A (2B) (20)
e may or may not exist for an SDF graph...

 buffer minimization relative to single appearance
schedules

(Bhattacharyya ‘94, Lauwereins ‘96, Murthy *‘97)

Buffer size minimization

« Assumption: no buffer sharing
e Example:

@1 10
PG —y

/ 1
@1 ¢

g=|100 100 10 1T

e Valid SAS: (100 A) (100 B) (10C) D
 requires 210 units of buffer area

o Better (factored) SAS: (10(10A) (10B) C) D
 requires 30 units of buffer areas, but...
 requires 21 loop initiations per period (instead of 3)

Scheduling more powerful DF

SDF islimited in modeling power

More general DF istoo powerful
— non-Static DF is Turing-complete (Buck ‘93)
— bounded-memory scheduling is not always possible

Boolean Data Flow: Quasi-Static Scheduling of special
" patterns’

— If-then-else, repeat-until, do-while

Dynamic Data Flow: run-time scheduling

— may run out of memory or deadlock at run time

Kahn Process Networks: quasi-static scheduling using
Petri nets

— conservative: schedulable network may be declared
unschedulable

Outline

 Motivation

o Static Scheduling of dataflow networks
— schedulability
— code and data size optimization

e Quasi-Static Scheduling of process
networks using Petri nets
— Free Choice nets
— Non-Free-Choice nets

e Conclusions

Quasi-Satic Scheduling

e
.-nu®

L
e Sequentialize concurrent operations as much as possible

e |ess communication overhead
(run-time task generation)

 Detter starting point for compilation
(straight-line code from function blocks)

[1 Must handle
o data-dependent control
e multi-rate communication

Quasi-Satic Scheduling

DATA

while(1){
read(DATA, d, 1);
D=d*d;

write(PORT, D, 1);

}

PORT IN

START

while(1){

read(START, N, 1);
for(i=0,y=0;i<N;i++){
read(IN, x, 2);
y = y+x[0]+2*x[1];
}
write(OUT, vy, 1);

ouT

¥
)
0p)

DATA START

while(1){
read(START, N, 1);
for(i=0,y=0;i<N;i++){
read(DATA, d, 1);
D=d*d;
x[0] = D;
read(DATA, d, 1);
D=d*d;
X[1] = D;
y = y+x[0]+2*x[1];
}
write(OUT, vy, 1);

}

ouT

The problem

o Glven:
a network of Kahn processes ._.

— Kahn process: sequential function + ports

— communication: port-based, point-to-point, uni-
directional, multi-rate

e Find:
asingle task

— functionally equivalent to the original network
(modulo concurrency)

The scheduling procedure

1. Specify a network of processes

— process: C + communication
operations

— netlist: connection between ports

2. Trandate to the computational
model: Petri nets

3. Find a*“schedule” on the Petri net [
S

4. Trand ate the schedule to a task -

Scheduling Petri Nets

o Unified model for mixed control and dataflow

* Most properties are decidable
(possibly scheduling is not ®)

o A lot of theory isavailable

Infinite Impulse Response filter specification:
o[i] =c2* i[i] +cl1* o[i-1]

@~@~g@ HH?E?

Static Data Flow network Petri net

From process network to Petri Net

START
while(1){
DATA read(START, N, 1);
for(i=0,y=0;i<N;i++){
_ read(IN, X, 2);
while(1){ y = y+x[0]+2*x[1];
read(DATA, d, 1); }
D=d*d; write(OUT, vy, 1);
write(PORT, D, 1); }
}
PORT IN
ouT
DATA A B

D and E in conflict
(modeling data-

dependent control)

OouT

Bounded scheduling of Petri Net

» A finite complete cycleisafinite sequence of
transition firings that returns the net to itsinitial state:

* infinite execution
 bounded memory
« Tofind afinite complete cycle we must solve the
palance (or characteristic) equation of the Petri net

{1 t2 {3 {2

’O ; >O—%| 1 Q > >O 2t3
_1 O- W
D=1-21l f*D=0
O '2 f* D =0hasno solution
f=(4,21) [1 No schedule

Outline

 Motivation

o Static Scheduling of dataflow networks
— schedulability
— code and data size optimization

e Quasi-Static Scheduling of process
networks using Petri nets
— Free Choice nets
— Non-Free-Choice nets

e Conclusions

Free-Cholce Petri Nets (FCPN)

e

Marked Graph (MG)

s

Free-Choice Confusion (not-Free-Choice)

e Free-Choice:

— choice depends on token value (abstracted away)
rather than arrival time

— easy to analyze (using structural methods)

Bounded scheduling

o Canthe“adversary” ever force token overflow?
t6

3 5

O oy

t4 {8

Bounded scheduling

o Canthe“adversary” ever force token overflow?
t6

t3 t5

O oy

t4 {8

t1 t2 3 5 (7

Bounded scheduling

o Canthe“adversary” ever force token overflow?
t6

t3 t5

O oy

t4 {8

Bounded scheduling

o Canthe“adversary” ever force token overflow?

Bounded scheduling

o Canthe“adversary” ever force token overflow?

Bounded scheduling

o Canthe“adversary” ever force token overflow?

Schedulability of an FCPN

» Valid schedule

 isaset of finite firing sequences that return the net to
itsinitial state

 contains one firing sequence for every combination of
outcomes of the free choices

. t4
t2 ta (t1t214)
11
13 5
t4
1
L»Q(IT:gj (t1t3ts)

t3 {5

{3 {5
>={(f1t214),(t11315)} — Schedulable

How to check schedulability

Basic intuition: every resolution of data-dependent
choices must be schedulable

Algorithm:

— Decompose the given Free-Choice Petri Net into
as many Conflict-Free components
(balance equation solutions)
as the number of possible resolutions of the non-
deterministic choices.

— Check if every component is statically schedulable
— Deriveavalid schedule, i.e. aset containing one static
schedule for each component
Natural extension (with multiple balance equations)
of SDF scheduling

Still decidable

From schedule to C code

S={(t1t2t1t2t4t617 t5)
(t1t3t5t6t7 t5)}

Task 1. Task 2:
{ t% { t6
it (p1) { t7,
t2; t5;
count(p2)++; }
if (count(p2) =2){
t4,
count(p2) = count(p2) - 2;
}
}
el se{
t3;
t5;
}

}

Application example: ATM Switch

il Nl > Input cells: accept?

 No static schedule due to:

— Inputs with independent rates
(need Real-Time dynamic scheduling)

— Data-dependent control
(can use Quasi-Static Scheduling)

Functional Decomposition

Accept/discard cell

> OO
. “’k‘

Output time selector

° ® O
o 6 06 0 ¢ 4 Tasks
(+ 1 arbiter)

Clock divider Output cell enabler

Minimal (QSS) Decomposition

Input cell processing

Output cell processing

Real-time scheduling of tasks

+ RTOS

ATM: experimental results

Functional partitioning

4+1 Tasks

Sw Implementation| QSS | Functional partitioning
Number of tasks 2 5

Lines of C code 1664 2187

Clock cycles 197,526 249,726

Outline

 Motivation

o Static Scheduling of dataflow networks
— schedulability
— code and data size optimization

e Quasi-Static Scheduling of process
networks using Petri nets
— Free Choice nets
— Non-Free-Choice nets

e Conclusions

Extension beyond FCPNs

« Schedulability of FCPNsis decidable

 Algorithm may be exponential due to many
components

 What if the resulting PN Is non-free choice?
(synchroni zation-dependent control)

e \What if the PN 1s not schedulable for all
choice resol utions?
(correlation between choices)

Finding a Schedule on the Petri Net

05 D6 p2 p6
START' START
c p2 p5 p6 ouT
C
p7 p2 p7
pl D E D =
I p3 p4 p2p8 p2p6p9
% OO0 ;) épsa =)
3 F Y P8 plp2p8 F
ouT
p3 p8
p2 p4 p8 Ei Eé p3 p4 p8 Ei [j;‘

* Distinguished noder (p2 p6 in this case) associated
with initial marking

 All and only transitions in conflict from each node

e A pathtonoder from each node

Find ng a Schedule on the Petri Net

: 2 p6
p5 D6 b: Pep
START' ® (o) START
- L p2 p5 p6
C
p7(e) L p2 p7
E
p1 D F .)
| 03 04 b p2p8) v3 (p2p6p9) Uy
2 p9 » ouT
p2 = p8 p2 p6 b
ouT
L
L p2p4p4p8
F
L p2p7

Find ng a Schedule on the Petri Net

2 p6
05 D6 p2p
START' START

P2 p5p6

c c ouT

p2p7
D E

p7
pl D E
I p3 D4 p2p8 p2p6p9
5 P9 =
ava
2
g ouT

p2p4p4p8

e Choose a balance equation solution using a heuristic,
and use it as much as possible
« Natural extension of FCPN (and SDF) scheduling

From schedule to C code

p2 p6
START
P2 pSp6

p2p7

p2p8 p2p6p9

P2p4p4p3

ouT

START

Start: read(START, N, 1); i=0; y=0;
DE: if(i < NX

x[0] = D;

x[1] = D;
y=y+x[0]+2*x[1]; i++; goto DE;
} else{ write(OUT, vy, 1); goto Start; }

ouT

Imerovi ng Efficiency

* Which transition should A
be chosen at each node? p2p5p6
C ouT
] . p2p7
— Find sequences of transitionsto createcycles. /-
T-invariant: abasis of thelinear system A x =0 P2popS
All, J]: # of tokens produced to the i-th place
by the j-th transition.
o START C D E F OUT
T-Iinvariants: [0 00 1 1010 1] p5 pé
[2 22 0 0101 O] START]|
C

— Choose a T-invariant using a heuristic, and use it

as much as possible. p7
pl D
oy
2
p8
p2 F

E
P9
ouT

Producer-Filter-Consumer Example

init

controller

Req Coeff Ack

Pixels Pixels

producer filter consumer | PIXels

Eerri mental Results

of clock
cycles

100000

1-task
Implementation

10000

leH1G

channels

| T T T T T TT] T T T T T T TT]

B "pic" —]

- 0" -+

- "pfc—02" 13 -

::?H\ﬂ’ @ = T
= ::;:ﬂ::::ﬁta__h

i "-u:E:-.:::E::: ===E=====—Ej

[&

Nl

| 1 1 A 1 1 I N I I

1 10 100

size of

}

4-task
Implementation

(Quasi) Satic Scheduling approaches

 Leeetal. 86 Static Data Flow: cannot specify data-
dependent control

e Buck et al. ‘94: Boolean Data Flow: undecidable
schedulability check, heuristic pattern-based algorithm

 Thoen et al. ‘99: Event graph: no schedulability check,
no task minimization

o Lin‘97: Safe Petri Net: no schedulability check, single-
rate, reachability-based algorithm

 Thidleet al. ‘99: Bounded Petri Net: partial
schedulability check, reachability-based algorithm

* Cortadellaet al. ‘00: General Petri Net: maybe
undecidable schedulability check, balance eguation-

based algorithm

Conclusions

« Static and Quasi-Static Scheduling minimize run-
time overhead by automatic partitioning of the
system functions into a minimal number of
concurrent tasks

— sequentialize concurrent operations
— data-dependent controls, multi-rate operations
— technology-independent preprocessor
e Open issues:
— correlated data-dependent controls
— heuristic evaluation of different schedules
— time-constrained scheduling
— what about multiple processors? ©

