
Static Scheduling
for Embedded Systems

Luciano Lavagno
University of Udine and Cadence Berkeley Labs

Joint work with:

Jordi Cortadella, Alex Kondratyev, Marc Massot,
Sandra Moral, Claudio Passerone,
Alberto Sangiovanni-Vincentelli, Marco Sgroi,
Yosinori Watanabe

Outline

• Motivation

• Static Scheduling of dataflow networks
– schedulability

– code and data size optimization

• Quasi-Static Scheduling of process
networks using Petri nets
– Free Choice nets

– Non-Free-Choice nets

• Conclusions

Function-architecture co-design

Mapping

Architectural
Specifications

Architectural
Specifications

Architectural
Specifications

Architectural
Specifications

High Level
Performance Simulation

System
Synthesis

C HDL

Architectural
Specifications

Architectural
Specifications

Architectural
Specifications

Functional
Specifications

Embedded Software Synthesis
• Specification: concurrent functional netlist

(Kahn processes, dataflow actors, SDL processes, …)
• Software implementation:

(smaller) set of concurrent software tasks
• Two sub-problems:

– Generate code for each task
(from code fragments of functional blocks)

– Schedule tasks dynamically
(to satisfy real-time constraints)

• Goals:
– minimize real-time scheduling overhead
– maximize effectiveness of compilation

Dataflow networks

• A little history

• Syntax and semantics
– actors, tokens and firings

• Scheduling of Static Dataflow
– static scheduling

– code generation

– buffer sizing

• Other Dataflow models
– Boolean Dataflow

– Dynamic Dataflow

Dataflow networks

• Powerful formalism for data-dominated system
specification

• Partially-ordered model (no over-specification)

• Deterministic execution independent of
scheduling

• Used for
– simulation

– code generation (scheduling and memory allocation)

for Digital Signal Processors (HW and SW)

A bit of history

• Kahn process networks (‘58): formal model
• Karp computation graphs (‘66): seminal work
• Dennis Dataflow networks (‘75): programming language

for MIT DF machine
• Lee’s Static Data Flow networks (‘86): efficient static

scheduling
• Several recent implementations

(Ptolemy, Khoros, Grape, SPW, COSSAP, SystemStudio,
DSPStation, Simulink, …)

Intuitive semantics

• (Often stateless) actors perform computation
• Unbounded FIFOs perform communication via sequences

of tokens carrying values
– (matrix of) integer, float, fixed point
– image of pixels, …..

• State implemented as self-loop
• Determinacy:

– unique output sequences given unique input sequences

– Sufficient condition: blocking read
(process cannot test input queues for emptiness)

Intuitive semantics

• Example: FIR filter
– single input sequence i(n)

– single output sequence o(n)

– o(n) = c1 * i(n) + c2 * i(n-1)

* c1

+ o

i

* c2

i(-1)

Examples of Dataflow actors

• SDF: Static Dataflow: fixed number of
input and output tokens

• BDF: Boolean Dataflow control token
determines number of consumed and
produced tokens

+
1

1
1

FFT
1024 1024 10 1

merge select
T F

FT

Outline

• Motivation

• Static Scheduling of dataflow networks
– schedulability

– code and data size optimization

• Quasi-Static Scheduling of process
networks using Petri nets
– Free Choice nets

– Non-Free-Choice nets

• Conclusions

Static scheduling of DF

• Key property of DF networks: output sequences do not
depend on firing sequence of actors

• SDF networks can be statically scheduled at compile-time
– execute an actor when it is known to be fireable
– no overhead due to sequencing of concurrency
– static buffer sizing

• Different schedules yield different
– code size
– buffer size
– pipeline utilization

Static Scheduling

• Sequentialize concurrent operations as much as possible

• less communication overhead
 (run-time task generation)

• better starting point for compilation
 (straight-line code from function blocks)

⇒ Must handle

• multi-rate communication

SS

Static scheduling of SDF

• Based only on process graph (no functionality)
• Network state: number of tokens in FIFOs
• Objective: find schedule that is valid, i.e.:

– admissible
(only fires actors when fireable)

– periodic
(brings network back to initial state firing each actor at least
once)

• Optimize cost function over admissible schedules

Balance equations

• Number of produced tokens must equal number of
consumed tokens on every edge

• Repetitions (or firing) vector vS of schedule S: number of
firings of each actor in S

• vS(A) np = vS(B) nc

must be satisfied for each edge

np nc
A B

Balance equations

B C

A
3

1

1

1

2
2

1
1

• Balance for each edge:
– 3 vS(A) - vS(B) = 0

– vS(B) - vS(C) = 0

– 2 vS(A) - vS(C) = 0

– 2 vS(A) - vS(C) = 0

Balance equations

• M vS = 0
iff S is periodic

• Full rank (as in this case)
• no non-zero solution
• no periodic schedule

(too many tokens accumulate on A->B or B->C)

3 -1 0
0 1 -1
2 0 -1
2 0 -1

M =

B C

A
3

1

1

1

2
2

1
1

Balance equations

• Non-full rank
• infinite solutions exist (linear space of dimension 1)

• Any multiple of q = |1 2 2|T satisfies the balance
equations

• ABCBC and ABBCC are minimal valid schedules
• ABABBCBCCC is non-minimal valid schedule

2 -1 0
0 1 -1
2 0 -1
2 0 -1

M =

B C

A
2

1

1

1

2
2

1
1

Static SDF scheduling

• Main SDF scheduling theorem (Lee ‘86):
– A connected SDF graph with n actors has a

periodic schedule iff its topology matrix M has
rank n-1

– If M has rank n-1 then there exists a unique
smallest integer solution q to

M q = 0

From repetition vector to schedule

• Repeatedly schedule fireable actors up to number
of times in repetition vector
 q = |1 2 2|T

• Can find either ABCBC or ABBCC
• If deadlock before original state, no valid schedule

exists (Lee ‘86)

B C

A
2

1

1

1

2
2

1
1

From schedule to implementation

• Static scheduling used for:
– behavioral simulation of DF code generation

for DSP
– HW synthesis (Cathedral, Lager, …)

• Issues in code generation
– execution speed (pipelining, vectorization)
– code size minimization
– data memory size minimization (allocation to

FIFOs)
– processor or functional unit allocation

Outline

• Motivation

• Static Scheduling of dataflow networks
– schedulability

– code and data size optimization

• Quasi-Static Scheduling of process
networks using Petri nets
– Free Choice nets

– Non-Free-Choice nets

• Conclusions

Compilation optimization

• Assumption: code stitching
(chaining custom code for each actor)

• More efficient than C compiler for DSP

• Comparable to hand-coding in some cases

• Explicit parallelism, no artificial control
dependencies

• Main problem: memory and processor/FU
allocation depends on scheduling, and vice-
versa

Code size minimization

• Assumptions (based on DSP architecture):
– subroutine calls expensive

– fixed iteration loops are cheap

(“zero-overhead loops”)

• Global optimum: single appearance schedule
e.g. ABCBC -> A (2BC), ABBCC -> A (2B) (2C)

• may or may not exist for an SDF graph…

• buffer minimization relative to single appearance
schedules

(Bhattacharyya ‘94, Lauwereins ‘96, Murthy ‘97)

• Assumption: no buffer sharing
• Example:

q = | 100 100 10 1|T

• Valid SAS: (100 A) (100 B) (10 C) D
• requires 210 units of buffer area

• Better (factored) SAS: (10 (10 A) (10 B) C) D
• requires 30 units of buffer areas, but…
• requires 21 loop initiations per period (instead of 3)

Buffer size minimization

C D
1 10

A

B 10

10

1

1

Scheduling more powerful DF
• SDF is limited in modeling power
• More general DF is too powerful

– non-Static DF is Turing-complete (Buck ‘93)
– bounded-memory scheduling is not always possible

• Boolean Data Flow: Quasi-Static Scheduling of special
“patterns”
– if-then-else, repeat-until, do-while

• Dynamic Data Flow: run-time scheduling
– may run out of memory or deadlock at run time

• Kahn Process Networks: quasi-static scheduling using
Petri nets
– conservative: schedulable network may be declared

unschedulable

Outline

• Motivation

• Static Scheduling of dataflow networks
– schedulability

– code and data size optimization

• Quasi-Static Scheduling of process
networks using Petri nets
– Free Choice nets

– Non-Free-Choice nets

• Conclusions

Quasi-Static Scheduling

• Sequentialize concurrent operations as much as possible

• less communication overhead
 (run-time task generation)

• better starting point for compilation
 (straight-line code from function blocks)

⇒ Must handle

• data-dependent control

• multi-rate communication

QSS

Quasi-Static Scheduling

QSS

OUT

START

while(1){
 read(START, N, 1);
 for(i=0,y=0;i<N;i++){
 read(DATA, d, 1);
 D = d * d;
 x[0] = D;
 read(DATA, d, 1);
 D = d * d;
 x[1] = D;
 y = y+x[0]+2*x[1];
 }
 write(OUT, y, 1);
}

DATA

DATA

PORT IN

while(1){
 read(START, N, 1);
 for(i=0,y=0;i<N;i++){
 read(IN, x, 2);
 y = y+x[0]+2*x[1];
 }
 write(OUT, y, 1);
}

while(1){
 read(DATA, d, 1);
 D = d * d;
 write(PORT, D, 1);
}

START

OUT

The problem

• Given:
a network of Kahn processes
– Kahn process: sequential function + ports
– communication: port-based, point-to-point, uni-

directional, multi-rate

• Find:
a single task
– functionally equivalent to the original network

(modulo concurrency)

The scheduling procedure

1. Specify a network of processes
– process: C + communication

operations
– netlist: connection between ports

2. Translate to the computational
model: Petri nets

3. Find a “schedule” on the Petri net

4. Translate the schedule to a task

Scheduling Petri Nets

• Unified model for mixed control and dataflow
• Most properties are decidable

(possibly scheduling is not !)
• A lot of theory is available

 o i c2 +

c1

Static Data Flow network

i c2 + o

c1

Petri net

Infinite Impulse Response filter specification:
o[i] = c2 * i[i] + c1 * o[i-1]

From process network to Petri Net

DATA

PORT IN

while(1){
 read(START, N, 1);
 for(i=0,y=0;i<N;i++){
 read(IN, x, 2);
 y = y+x[0]+2*x[1];
 }
 write(OUT, y, 1);
}

while(1){
 read(DATA, d, 1);
 D = d * d;
 write(PORT, D, 1);
}

START

OUT

DATA A B

2
OUT

START

C

D E

D and E in conflict
(modeling data-
dependent control)

DATA PORTA B

2
OUT

START

IN

C

D E

D and E in conflict
(modeling data-
dependent control)

Bounded scheduling of Petri Net

• A finite complete cycle is a finite sequence of
transition firings that returns the net to its initial state:

• infinite execution
• bounded memory

• To find a finite complete cycle we must solve the
balance (or characteristic) equation of the Petri net

f * D = 0

t1 t2 t3

f = (4,2,1)

2 2
2

t1
t2

t3

⇒ No schedule

D =
1 0
-2 1
 0 -2 f * D = 0 has no solution

Outline

• Motivation

• Static Scheduling of dataflow networks
– schedulability

– code and data size optimization

• Quasi-Static Scheduling of process
networks using Petri nets
– Free Choice nets

– Non-Free-Choice nets

• Conclusions

Free-Choice Petri Nets (FCPN)

Marked Graph (MG)

Free-Choice Confusion (not-Free-Choice)

• Free-Choice:
– choice depends on token value (abstracted away)

rather than arrival time

– easy to analyze (using structural methods)

t1 t2 t3 t5 t6

Bounded scheduling

t1 t2
t3

t4

t5

t6

t7

t8

t1 t2 t3 t5 t6

• Can the “adversary” ever force token overflow?

Bounded scheduling

t1 t2
t3

t4

t5

t6

t7

t8

t1 t2 t3 t5 t7

• Can the “adversary” ever force token overflow?

t1 t2 t4 t8

Bounded scheduling

t1 t2
t3

t4

t5

t6

t7

t8

t1 t2 t4 t8

• Can the “adversary” ever force token overflow?

Bounded scheduling

t1 t2
t3

t4

t5
t7

t6

• Can the “adversary” ever force token overflow?

Bounded scheduling

t1 t2
t3

t4

t5
t7

t6

• Can the “adversary” ever force token overflow?

Bounded scheduling

t1 t2
t3

t4

t5
t7

t6

• Can the “adversary” ever force token overflow?

Schedulability of an FCPN

• Valid schedule Σ
• is a set of finite firing sequences that return the net to

its initial state
• contains one firing sequence for every combination of

outcomes of the free choices

t3

t2
t1

t5

t4

SchedulableΣΣΣΣ={(t1 t2 t4),(t1 t3 t5)}

t3

t2
t1

t5

t4
(t1 t2 t4)

t3

t2
t1

t5

t4

(t1 t3 t5)

How to check schedulability

• Basic intuition: every resolution of data-dependent
choices must be schedulable

• Algorithm:
– Decompose the given Free-Choice Petri Net into

as many Conflict-Free components
(balance equation solutions)
as the number of possible resolutions of the non-
deterministic choices.

– Check if every component is statically schedulable
– Derive a valid schedule, i.e. a set containing one static

schedule for each component

• Natural extension (with multiple balance equations)
of SDF scheduling

• Still decidable

From schedule to C code

ΣΣΣΣ={(t1 t2 t1 t2 t4 t6 t7 t5)
 (t1 t3 t5 t6 t7 t5)}

t1

t3 t5

t4t2
2

t6 t7

Task 1:
{ t1;
 if (p1) {
 t2;
 count(p2)++;
 if (count(p2) = 2) {
 t4;
 count(p2) = count(p2) - 2;
 }
 }
 else{
 t3;
 t5;
 }
}

Task 2:
{ t6;
 t7;
 t5;
}

p1

p3

p4

p2

Application example: ATM Switch

Input cells: accept?

Output cells: emit?

• No static schedule due to:
– Inputs with independent rates

(need Real-Time dynamic scheduling)
– Data-dependent control

(can use Quasi-Static Scheduling)

Functional Decomposition

4 Tasks
(+ 1 arbiter)

Accept/discard cell

Clock divider

Output time selector

Output cell enabler

 Minimal (QSS) Decomposition

2 Tasks

Input cell processing

Output cell processing

Real-time scheduling of tasks

+ RTOS

Shared Processor

Task 1

Task 2

ATM: experimental results

 Sw Implementation QSS Functional partitioning

 Number of tasks 2 5

 Lines of C code 1664 2187

Clock cycles 197,526 249,726

4+1 Tasks 2 Tasks

Functional partitioning QSS

Outline

• Motivation

• Static Scheduling of dataflow networks
– schedulability

– code and data size optimization

• Quasi-Static Scheduling of process
networks using Petri nets
– Free Choice nets

– Non-Free-Choice nets

• Conclusions

Extension beyond FCPNs

• Schedulability of FCPNs is decidable

• Algorithm may be exponential due to many
components

• What if the resulting PN is non-free choice?
(synchronization-dependent control)

• What if the PN is not schedulable for all
choice resolutions?
(correlation between choices)

Finding a Schedule on the Petri Net

OUT

DATA A B

2

START

C

D E

F

• A path to node r from each node
• All and only transitions in conflict from each node

• Distinguished node r (p2 p6 in this case) associated
with initial marking

p1

p2

p3 p4

p5 p6

p7

p8
p9

 p2 p6

START

 p2 p5 p6

C

D E
 p2 p8 p2 p6 p9

OUT

 p2 p7

 p1 p2 p8

 p3 p8

 p2 p4 p8

DATA

A

B

DATA

 p1 p2
 p4 p8

 p3 p4 p8
A B

 p2 p4
 p4 p8

F

Finding a Schedule on the Petri Net

p1

p2

p3 p4

p5 p6

p7

p8
p9

OUT

DATA A B

2

START

C

D E

F

 r (p2 p6)

START

 v1 (p2 p5 p6)

C

 v2 (p2 p7)

D E
 v3 (p2 p6 p9)

OUT

 v4 (p2 p6) : r

: r

: the node at which a cycle was
found.

 v5 (p2 p8)

DATA

A

B

DATA

A

B

 v6 (p2p4p4p8)

F

 v7 (p2p7): v2

: v2

: v2

: v2

: r

: r

: r

Finding a Schedule on the Petri Net

OUT

DATA A B

2

START

C

D E

F

p1

p2

p3 p4

p5 p6

p7

p8
p9

OUT

 r (p2 p6)

START

 v1 (p2 p5p6)

C

 v2 (p2p7)

D E
 v3 (p2p6p9) v5 (p2p8)

DATA

A

B

DATA

A

B

 v6 (p2p4p4p8)

F

• Choose a balance equation solution using a heuristic,
and use it as much as possible

• Natural extension of FCPN (and SDF) scheduling

From schedule to C code

OUT

 r (p2 p6)

START

 v1(p2 p5 p6)

C

 v2 (p2p7)

D E
 v3 (p2p6p9) v5 (p2p8)

DATA

A

B

DATA

A

B

 v6 (p2p4p4p8)

F

Start: read(START, N, 1); i=0; y=0;

DE: if(i < N){

 read(DATA, d, 1); D = d*d;

 x[0] = D;

 read(DATA, d, 1); D = d*d;

 x[1] = D;
 y=y+x[0]+2*x[1]; i++; goto DE;
 } else{ write(OUT, y, 1); goto Start; }

START

OUT

DATA

Improving Efficiency

• Which transition should
be chosen at each node?

– Find sequences of transitions to create cycles.

T-invariant: a basis of the linear system A x = 0
A[i, j]: # of tokens produced to the i-th place

 by the j-th transition.
 DATA A B START C D E F OUT
 [0 0 0 1 1 0 1 0 1]
 [2 2 2 0 0 1 0 1 0]

– Choose a T-invariant using a heuristic, and use it
as much as possible.

OUT

DATA A B

2

START

C

D E

F

p1

p2

p3 p4

p5 p6

p7

p8
p9

START

OUT

 r (p2 p6)

 v1 (p2p5p6)

C
 v2 (p2 p7)

D E
 v3 (p2p6p9)

T-invariants:

Producer-Filter-Consumer Example

controller

filterproducer consumer

init

Req AckCoeff

Pixels Pixels

pixels

Experimental Results

of clock
cycles

size of
channels

4-task
implementation

1-task
implementation

(Quasi) Static Scheduling approaches

• Lee et al. ‘86: Static Data Flow: cannot specify data-
dependent control

• Buck et al. ‘94: Boolean Data Flow: undecidable
schedulability check, heuristic pattern-based algorithm

• Thoen et al. ‘99: Event graph: no schedulability check,
no task minimization

• Lin ‘97: Safe Petri Net: no schedulability check, single-
rate, reachability-based algorithm

• Thiele et al. ‘99: Bounded Petri Net: partial
schedulability check, reachability-based algorithm

• Cortadella et al. ‘00: General Petri Net: maybe
undecidable schedulability check, balance equation-
based algorithm

Conclusions
• Static and Quasi-Static Scheduling minimize run-

time overhead by automatic partitioning of the
system functions into a minimal number of
concurrent tasks
– sequentialize concurrent operations
– data-dependent controls, multi-rate operations
– technology-independent preprocessor

• Open issues:
– correlated data-dependent controls
– heuristic evaluation of different schedules
– time-constrained scheduling
– what about multiple processors? ☺

