
Real-Time Operating Systems:Real-Time Operating Systems:
Principles and a Case StudyPrinciples and a Case Study

Kang G. Shin

Real-Time Computing Laboratory

EECS Department

University of Michigan

URL: http://www.eecs.umich.edu/~kgshin

17/08/2001 2

OutlineOutline

! Generic Aspects of RTOSs
– Requirements

– Classification

– Approaches

! Case Study: a Small Memory RTOS, EMERALDS
– Motivation

– Overview of EMERALDS

– Minimizing Code Size

– Minimizing Execution Overheads

! Conclusions

17/08/2001 3

Real-Time Operating SystemsReal-Time Operating Systems

! Four main functions
– Process management and synchronization

– Memory management

– IPC

– I/O

! Must also support predictability and real-
time constraints

17/08/2001 4

Classification of Classification of RTOSsRTOSs

! Small proprietary (homegrown and
commercial) kernels

! RT extensions to UNIX and others

! Research RT kernels

17/08/2001 5

Proprietary KernelsProprietary Kernels

Small and fast commercial RTOSs: QNX, pSOS,
VxWorks, Nucleus, ERCOS, EMERALDS,
Windows CE,...

! Fast context switch and interrupt response
! Small in size
! No virtual memory and can lock code & data in

memory
! Multitasking and IPC via mailboxes, events,

signals, and semaphores

17/08/2001 6

Proprietary Kernels (cont’d)Proprietary Kernels (cont’d)

! How to support real-time constraints
– Bounded primitive exec time

– real-time clock

– priority scheduling

– special alarms and timeouts

! Standardization via POSIX RT extensions

17/08/2001 7

RT ExtensionsRT Extensions

RT-UNIX,RT-LINUX, RT-MACH, RT-POSIX
! Slower, less predictable, but more functions and

better development envs.
! RT-POSIX: timers, priority scheduling, rt files,

semaphores, IPC, async event notification, process
! mem locking, threads, async and sync I/O.
! Problems: coarse timers, system interface and

implementation,long interrupt latency, FIFO
queues,no locking pages in memory, no
predictable IPC

17/08/2001 8

ResearchResearch RTOSs RTOSs

! Support rt sched algorithms and timing
analysis

! RT sync primitives, e.g., priority ceiling.

! Predictability over avg perf

! Support for fault-tolerance and I/O

! Examples: Spring, Mars, HARTOS,
MARUTI, ARTS, CHAOS, EMERALDS

17/08/2001 9

Small memories, slow processorsSmall memories, slow processors

! Small-memory embedded systems used everywhere:
– automobiles

– factory automation and avionics

– home appliances

– telecommunication devices, PDAs,…

! Massive volumes (10K-10M units) ⇒ Saving even a
few dollars per unit important:
– cheap, low-end processors (Motorola 68K, Hitachi SH-2)

– max. 32-64 KB SRAM, often on-chip

– low-cost networks, e.g., Controller Area Network (CAN)

17/08/2001 10

RTOS for Small-Memory EmbeddedRTOS for Small-Memory Embedded
SystemsSystems

! Despite restrictions, must perform increasingly
complex functions

! General-purpose RTOSs (VxWorks, pSOS, QNX) too
large or inefficient

! Some vendors provide smaller RTOSs (pSOS Select,
RTXC, Nucleus) by carefully handcrafting code to get
efficiency

17/08/2001 11

RTOS Requirements for Small-MemoryRTOS Requirements for Small-Memory
Embedded SystemsEmbedded Systems

! Code size ~ 10 kB

! Must provide all basic OS services: IPC, task
synchronization, scheduling, I/O

! All aspects must be re-engineered to suit small-
memory embedded systems:
– API

– IPC, synchronization, and other OS mechanisms

– Task scheduling

– Networking

17/08/2001 12

EMERALDS ArchitectureEMERALDS Architecture

! Extensible Microkernel for Embedded ReAL-time
Distributed Systems

17/08/2001 13

Minimizing Kernel SizeMinimizing Kernel Size

! Location of resources known
– allocation of threads on nodes

– compile-time allocation of mailboxes, etc., so no naming
services

! Memory-resident applications:
– no disks or file systems

! Simple messages
– e.g., sensor readings, actuator commands

– often can directly interact with network device driver

17/08/2001 14

Reducing Kernel Execution OverheadReducing Kernel Execution Overhead

! Task Scheduling: EDF, RM can consume 10-15% of
CPU

! Task Synchronization: semaphore operations incur
context switch overheads

! Intertask Communication: often exchange 1000’s of
short messages, especially if OO is used

17/08/2001 15

Real-Time SchedulingReal-Time Scheduling

! Problems with cyclic time-slice schedulers
– Poor aperiodic response time

– Long schedules

! Problems with common priority-driven schedulers
– EDF: High run-time overheads

– RM: High schedulability overheads

17/08/2001 16

Scheduler OverheadsScheduler Overheads

! Run-time Overheads: Execution time of scheduler
– RM: static priorities, low overheads
– EDF: high run-time overheads

! Schedulability Overhead: 1 - U*
– U* is ideal utilization attainable, assuming no run-time

overheads
– EDF has U* = 1 (no schedulability overhead)
– RM has U* > 0.7, avg. 0.88

! Total Overhead: Sum of these overheads
– Combined static/dynamic (CSD) scheduler finds a balance

between RM and EDF

17/08/2001 17

SchedulabilitySchedulability Overhead Illustration Overhead Illustration

! Example of RM schedulability issue

! U = 0.88; EDF schedulable, but not under RM

Task 1 2 3 4 5 6 7 8 9 10
P (ms) 4 5 6 7 8 20 30 50 100 130
c (ms) 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5

0 1 2 3 4 5 6 7 8

T1 T2 T3 T4 T1 T2 T3 T4

T5 misses deadline

time

17/08/2001 18

Combined Static and DynamicCombined Static and Dynamic
SchedulingScheduling

! CSD maintains two task queues:
– Dynamic Priority (DP) scheduled by EDF

– Fixed Priority (FP) scheduled by RM

! Given workload { Ti : i = 1,2,...,n } sorted by RM-
priority
– Let r be smallest index such that Tr +1 - Tn are RM-

schedulable

– T1 - Tr are in DP queue

– Tr +1 - Tn are in FP queue

– DP has priority over FP queue

17/08/2001 19

CSD OverheadCSD Overhead

! CSD has near zero schedulability overhead
– Most EDF schedulable task sets can work under CSD

! Run-time overheads lower than EDF
– r-long vs. n-long DP queue

– FP tasks incur only RM-like overhead

! Reducing CSD overhead further
– split DP queue into multiple queues

– shorter queues for dynamic scheduling

– need careful allocation, since schedulability overhead
incurred between DP queues

17/08/2001 20

CSD PerformanceCSD Performance

! Comparison of CSD-x, EDF, and RM
– 20-40% lower overhead than EDF for 20-30 tasks

– CSD-x improves performance, but diminishing returns

17/08/2001 21

Efficient SemaphoresEfficient Semaphores

! Concurrency control among tasks

! May cause large number of context switches

! Typical scenario: T2 > Tx > T1 & T1 is holding lock

unblock T2
context switch C1
T2 calls acquire_sem()
priority inheritance
 (bump-up T1)
block T2
context switch C2
T1 calls release_sem()
undo T1 priority
 inheritance
unblock T2
context switch C3

17/08/2001 22

Eliminating Context SwitchEliminating Context Switch

! For each acquire_sem(S) call:
– pass S as extra parameter to blocking call

– if S unavailable at end of call, stay blocked

– unblock when S is released

– acquire_sem(S) succeeds without blocking

17/08/2001 23

Optimize Priority Inheritance StepsOptimize Priority Inheritance Steps

! For DP tasks, change one variable, since they are in
unsorted queue

! For FP tasks, must remove T1 from queue and
reinsert according to priority
– Solution: switch positions of T1 and T2

– Avoids parsing queue

– Since T2 is blocked, can be put anywhere as position holder
to remember T1’s original position

17/08/2001 24

New Semaphore Scheme PerformanceNew Semaphore Scheme Performance

! DP tasks - fewer context switches

! FP tasks - reflects optimized PI steps

FP Tasks DP Tasks

17/08/2001 25

Message PassingMessage Passing

! Tasks in embedded systems may need to exchange
thousands of short messages per second

! Traditional IPC mechanisms (e.g., mailbox-based
IPC) do not work well
– high overheads

– no “broadcast” to send to multiple receivers

! For efficiency, application writers forced to use global
variables to exchange information
– Not safe if access to global variable unregulated

17/08/2001 26

State MessagesState Messages

! Uses single-writer, multiple-reader paradigm

! Writer-associated state message “mailbox”
(SMmailbox)
– A new message overwrites previous message

– Reads do not consume messages

– Reads and writes are non-blocking, synchronization-free

! Read and write operations through user-level macros
– Much less overhead than traditional mailboxes

– A tool generates customized macros for each state message

17/08/2001 27

State MessagesState Messages

! Problem with global variables: a reader may
read a half-written message as there is no
synchronization

! Solution: N-deep circular message buffer for
each state message
– Pointer is updated atomically after write

– if writer has period 1 ms and reader 5 ms, then
N=6 suffices

! New Problem: N may need to be in the 100’s

17/08/2001 28

State Messages in EMERALDSState Messages in EMERALDS

! Writers and “normal” readers use user-level macros

! Slow readers use atomic read system call

! N depends only on faster readers (saves memory)

State Messages Mailboxes

send (8 bytes) 2.4 us 16.0 us
receive (8 bytes) 2.0 us 7.6 us
receive_slow (8 bytes) 4.4 us

17/08/2001 29

Memory ProtectionMemory Protection

! Needed for fault-tolerance, isolating bugs

! Embedded tasks have small memory footprints
– can use just 1 or 2 page tables from lowest level of hierarchy

– use common upper-level tables to conserve kernel memory

! Map kernel into all task address spaces
– Minimize user-kernel copying as task data and pointers

accessible to kernel

– Reduce system call overheads to little more than for function
calls

17/08/2001 30

EMERALDS-OSEKEMERALDS-OSEK

! OSEK OS standard consists of
– API: system call interface

– Internal OS algorithms: scheduling and
semaphores

! OSEK Communication standard (COMM) is
based on CAN

! Developed an OSEK-compliant version of
EMERALDS for Hitachi SH-2 microprocessor

17/08/2001 31

EMERALDS-OSEKEMERALDS-OSEK(cont’d)(cont’d)

! Features
– Optimized context switching for basic and

extended tasks

– Optimized RAM usage

! Developed OSEK-COMM over CAN for
EMEMRALDS-OSEK

! Hitachi’s application development and
evaluation: collision-avoidance and adaptive
cruise control systems

17/08/2001 32

ConclusionsConclusions

! Small, low-cost embedded systems place great
constraints on operating system efficiency and size

! EMERALDS achieves good performance by re-
designing basic services for such embedded systems

– Scheduling overhead reduced 20-40%

– Semaphore overheads reduced 15-25%

– Messaging passing overheads 1/4 to 1/5 that of
mailboxes

– complete code ~ 13 kB

17/08/2001 33

Current State and Future DirectionsCurrent State and Future Directions

! Implemented on Motorola 68040

! Partial ports to 68332, PPC, and x86

! Investigating networking issues: devicenet, real-time
Ethernet, UDP/IP

! OS-dependent and independent development tools

! Energy-Aware EMERALDS
– extend to support energy saving hardware (DVS, sprint &

halt)

– Energy-aware Quality of Service (EQoS)

– Applications to info appliances and home networks

17/08/2001 34

Related PublicationsRelated Publications

! RTAS ‘96 - original EMERALDS
! RTAS ‘97 - semaphore optimizations
! NOSSDAV ‘98 - protocol processing optimizations
! SAE ’99 - EMERALDS-OSEK
! SOSP ‘99 - EMERALDS with re-designed services
! RTSS’00 – Energy-aware CSD
! IEEE-TSE’00 –complete version with schedulability

analysis
! SOSP’01 (to appear) – Exploitation of DVS
URL: http://kabru.eecs.umich.edu/rtos

