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RTOS for embedded DSP : the basics

« Real-Time & Multi-Tasking :
— scheduling of multiple tasks on single CPU
— priority used to meet real-time requirements
=« Operating System :
— Isolates processor hardware from application

— kernel services allow tasks to synchronize and
communicate

— interfaces tasks with 1/0 through drivers
« Often neglected :
— protection : no MMU
— dynamic memory allocation : can be catastrophic
— parallel DSP : communication should be RTOS service
— heterogeneous systems : more often the reality
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Types of scheduling

= Superloop :

— loops into single endless loop : [test, call function]
=« Round-robin, FIFO :

— first in, first served

— cooperative multi-tasking, run till descheduling point
= Priority based, pre-emptive

— tasks run when executable in order of priority

— can be descheduled at any moment
= Earliest deadline first :

— most dynamic form : deadlines are time based

— but complex to use and implement

— granularity is an issue
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Real-time trace : viewing the scheduling
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Multi-tasking

= Origin ;
— a software solution to a hardware limitation

— von Neuman processors are sequential, the real-world is
“parallel” by nature and software is just modeling

« How to ?
— A function is a [callable] sequential stream of instructions
— uses resources [mainly registers] => defines “context”
— non-sequential processing =
. switching between ownership of processor(s)
. reducing overhead by using idle time or avoid active wait :

— each function has its own workspace
— a task = function with proper context and workspace
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A task Is more

» Tasks need to interact
— synchronize
— pass data = communicate
— share resources
= a task = a virtual single processor
= a task = unit of abstraction
= a multi-tasking system emulates a real system
= developed out of embedded industrial needs
= theoretical model :
— CSP : Communicating Sequential Processes
— C.A.R. Hoare
— formal, but doesn’t match complexity of real world
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Control flow, dataflow and time-triggered

« Three dominant real-time paradigms :
— control flow :
. event driven - asynchronous : latency is the issue
. traverse the state machine
. uncovered states generate complexity
— data-flow :
. data-driven : throughput is the issue
. multi-rate processing generates complexity
— time-triggered :
. play safe : allocate timeslots beforehand
. reliable if system is predictable
— REAL SYSTEMS : combination of above



DSP : the basics

= Any processor can execute a DSP algorithm
= But:
— DSP is real-time data processing at high rates :
. requires adequate concurrent I/O
. requires fast interrupt handling
. control code is barely an overhead on a DSP
— DSP often requires tight inner loop code
— DSP applications have other constraints as well :
. Power consumption : Ops/Watt
. Heat dissipation : convection cooled
. Performance density : Ops/mm2
. Cost density : Ops/$
— DSP must scale 1/0O and processing
— DSP is diverse because of the data types :
. fixed point 16/24/32 bit, floating point 32/64bit, composite
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DSP : the future

= The challenge :

— stretching the von Neuman machine :
. throughput processing : VLIW, multiple ALU, pipelining
. multimedia : mixed datatypes
.- memory speed < CPU speed
. 1/0 : DMA
— boundary conditions :
. Size : as small as a stamp
. power consumption : runs on an AA battery for days
. heat : so cool you can touch it
. processing power : multiples of 10 Gops/sec
. 1/O bandwidth : multiples of 1 Gbit/sec
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How will it look like (1) ?

= Technology enabled :
— shrinking line widths (0.13 um and less)
— copper interconnects
— lower supply voltage
— dynamic frequency and voltage control
= Challenges :
— NRE cost doubles, while line width shrinks
— frequencies are in the RF, even radar range

— packaging and I/O (incl.. Memory) are the real
bottlenecks

« Facts :
— single clock 1Bn gates on-a-chip is not trivial
— power consumption = F(Hz, Vcc)



How will it look like (2) ?

» Conclusion :
— multi-core, course grain asynchronous SoC design
— cores as proven components -> well defined interfaces
— keep critical circuits inside
— simplify 1/O :
. high speed serial links
— NRE dictates high volume -> more reprogrammability
— system is now a component

— below minimum thresholds of power and cost, it becomes
cheap to “burn” gates

— software becomes the differentiating factor

=
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The next generation SoC with DSP

Genera Purpose 1/O

Vcc
GP-RISC(s)
GP-DSP(s) Ghit/sLVDSI1/0O
>
A-DSP Bulk Memory
FS-DSP Logic Inter SoC Links
< -
Cross-bar :
/O Devices
< -
Memory Network Interfaces
General Purpose FPGA Logic < g

>




Complexity is the driving force behind the
software dominance in applications

m—
—
B . Processor performance |:> Software driven design
R— doubles every year concept
« Complex requirements I:> because

software dominates the
» Shorter time-to-market I:> application

In a hardware driven world, this is almost like a
revolution. Software focused approaches lead it.
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Example : the Virtuoso software RTOS tool as
design approach for the Atlas DSP system

Virtuoso™
RTOS for DSP
Development
Environment

= Easy and fast
development of multi-
processor and
heterogeneous DSP

Atlas™
Universal Digital
Signal Computer

= In no time to real-time
DSP

— Rapid Prototyping

— Reliable & fast
development

— Scaling up or
down

— Opep deployment

— Reduces

developmenttime

— Safe: portability
and scalability

DSP System
Design Services

= Can deliver a
complete DSP system
solution from A-Z

— In-depth
knowledge of
DSPs

— System
Architecture
expertise




Hardware becomes software at board level
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Atlas 3-C6202/3 block diagram
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FPGA content as IP : a general purpose I/O and
communication engine
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Atlas3-C62x FPGA Functionality

G . e ()" FPGA implements 90
: | % of all gluelogic on

board
Clock- Clock-Generation

| e ) Inter-processor
communication using

o S _

" DMA and high speed
| I e LVDS
= | @< [~ = Intelligent I/O to offload
- : processor (I0-engine)
i = Creates processor
(e KF - independent
here to|insert customer

application specific algorithm ” "~ Communication and I/O
block

= (=) =  Remaining gates for
I e processing in I/O

/‘\':‘j 1/0-Engine K: 3333333 § Stream

g
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What is Virtuoso ?

« A Real Time Operating System (RTOS) at the core
=« Creates independence of the HW from the SW
— “Virtual Single Processor” model
= Created By Eonic Systems, now owned by Wind River

SW Application

Unifying Programming Framework

RTOS . _ _
(SW) Virtuoso Virtuoso Virtuoso Virtuoso

Ll 050 AS-DSP




Beyond the RTOS

= Multi-tasking = Process Oriented Programming
« A Task =

— Unit of execution

— Encapsulated functional behavior

— Modular programming
= High Level [Programming] Language

— common specification :
. for SW
— compile to asm
. for HW
— compile to VHDL or Verilog

— enabler for SoC “co-design”
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System level design inspired by CSP :
processes are abstract building blocks

operation " \‘/’ 5

operation ‘
@

Process
Channel

—

| =4

a process based system

ISR

[ 2 1] o | —

B€ hannel operation to interface with HW and other processes



Virtuoso’s Virtual Single Processor :
a pragmatic CSP : distributed semantics

Input Queue { Console Input Driver
Output Queue { Console Output Driver

- binary eve ' <——|  Sampling Task2

- counting semapie

- FIFO queues Node

-mailbox/messages

-channels

ces (=mutex) Sampling Taskl

= =memory maps/poo
— Node 3

Monitor Task
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Kernel services : an orthogonal set

« Events : binary data, one to one, local -> interface to HW

= [cOounting] semaphore : events with a memory, many to
many, distributed

=« FIFO queue : simple and static datacomm between tasks,
many to many, distributed

= Mailbox : variable size datacomm between tasks, rendez-
vous, one/many to one/many, distributed

=« Channels : variable datasize, between tasks and/or host
service, asynchronous on send and receive, distributed

= Resources : ownership protection, priority inheritance
= Memory maps/pools

= Semantic issues : distributed, group operators, blocking,
non-blocking, time-out
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Teaching Environment for Virtuoso
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The unique Virtual Single Processor (VSP) model

» Transparent parallel programming
— Cross development on any platform + portability
— Scalability, even on heterogeneous targets
=« Distributed semantics
— Program logic neutral to topology and object mapping
— Clean API provides for less programming errors
— Prioritized packet switching communication layer

=« Based on “CSP” (C.A.R. Hoare): Communicating Sequential
Processes: VSP is pragmatic superset

» Multitasking and message passing
= Process oriented programming
= Interfacing using communication protocols
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Layered model :
separate system from application

20 to 40K Instructions

Pre-emptive |
Task-1 Task-i Prioritized Tasks + ovap
\ T “Background”

Nanokernel \ »ll Prioritized
- Processes :
Proc-1 | ,| Micro-
< >N System level
A
ISR1 Prioritized
ISRs
y A
ISRO FIFO-ed
ISRs ? tructions

)]

R
R
R
|



Hierarchy = prioritization

Background task high prio

Background task low prio

Lo

System Process

Driver Process

IData ready

DMA

(o))
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Hierarchy and HW and time resources

Abstract behavior
Application level

SW flexibility

High Level Language
Register context
Memory use

System level

Latency

Data packet sizes
Hardware determinism

~
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Implementation of VSP model

« Application tasks preemptively scheduled by local
microkernel, full context

= Local nanokernel “processes” :
— Reduced context (some assembly required)
— Prioritized FIFO scheduler
— Used for microkernel process and drivers
=« Remote services :
— Detected by objectID of invoked kernel object

— Microkernel passes command packets to communication
layer
— Communication layer (on “netlinks”) :
. prioritized packet switching
. Parallel paths possible
. Local buffers for throughput routing
. Deadlock free

(e¢]
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CSP at the HW level

» Request/Ack protocol assures correct data transfer between async
units, even at the register level

= IS like the mailbox mechanism

Sender m_‘
BUFR

4




RTOS objects : mapping onto HW

Software Hardware
e
%: Task - Process Logic State Machine
—
‘ KS_FifoPutW FIFO memory
> KS_ MsgPutw shared memory + dma
‘ KS SemasSignal status register + counter

RTOS objects can be used for SW+HW system
specification, simulation and implementation

8
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A SW-HW implementation (see slide 21)

I :
- 1. Algorithm using MATLAB/
SDT, Pegasus, ...

2. Simulate logic model
with RTOS simulator on
host OS like NT

3. Run RTOS program on
target CPU

4, Map parts onto SW
(C to ASM - binary)
map parts onto HW

(Cto VHDL or RTL)

—>> Output FIFO

Processing
Task

DMAP>

Display Controller

Mail Box1

<A

Bufl

A/D channell

<DMA

Monitor Task

Buf2

<—‘D MA

Core CPU

Regl

A/D channel2

Reg2
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How to get there ? Virtuoso VSP

» Example: audio application

Read
Audio
Data Task

Process
Audio data
stage 1

Process
Audio data
stage 2

Split L-R
channels

Process R
channel
stage 3

Process L
channel
stage 3

» Start with a block diagram

Process R
channel
stage 4

Process L
channel
stage 4

Play
Audio
Data task

Process
Audio data
stage 6

Process
Audio data
stage 5

Channel joiner

N
™
[
i
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Early development

» Prototype development: Virtuoso simulator on workstation

Virtuoso tasks & communication channels, on simulator using VC++

Audio In

Small Windows
application, getting audio
from soundcard, and
playing on soundcard

Audio out

Read Process Process
Audio Audio data Audio data
Data Task stage 1 stage 2

Named pipes, turned into
"Host Channels" by v4.2
host server

Play Process
Audio Audio data AE&?S ZS:ta
Data task stage 6 stage 5

Split L-R
channels

Process R
channel
stage 3

<

Process R
channel
stage 4

S =

Process L
channel
stage 3

Process L
channel
stage 4

Channel joiner
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Early development

» Profiling/benchmarking: COTS DSP HW

Virtuoso tasks & communication channels, on COTS DSP card

Audio In

Small Windows
application, getting audio
from soundcard, and
playing on soundcard

Audio out

Read Process Process .
Audio Audio data Audio data Split L-R
Data Task stage 1 stage 2 channels

Process R Process L
Named pipes, turned into channel channel
"Host Channels" by v4.2 stage 3 stage 3
host server
NO COde Chan es| Process R Process L
g . channel channel

stage 4 stage 4

Play Process
Audio Audio data AEcri?gzssta Channel joiner
Data task stage 6 stage 5
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Early development

» Deployment: specific DSP HW, with on-board I/O

Virtuoso tasks & communication channels, on specific DSP card \

ADC Read Process Process
Driver Audio Audio data Audio data Split L-R
Task Data Task stage 1 stage 2 channels

Process R Process L
channel channel

N eW, HW v4.2 target channels stage 3 stage 3
specific code

Process R Process L
channel channel
stage 4 stage 4

DAC y Play Process

’ Audio - Process
Driver Data task AU?IO d:ta Audio data
task stage stage 5

\l
[
o
O
=
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Distribute processing

= distribute tasks over different DSP processors

Virtuoso tasks & communication channels, on specific DSP card

@l}

DSP 1

DSP 2

DSP 3

DSP 4

DSP 5

DSP 6

ADC
Driver
Task

DAC
Driver
task

Read Process
Audio Audio data
Data Task stage 1

No Code Changes!

Play Process

Audio Audio data
Data taSk Stage 6

Process
Audio data
stage 2

Process
Audio data
stage 5

Process
R channel
stage 3

\y

Process
R channel
stage 4

Split L-R
channels

Process L
channel
stage 3

Process L
channel
stage 4
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Tune processing

» Introduce hand-optimized algorithms = less processing power

Virtuoso tasks & communication channels, on specific DSP card \

ADC Read Process Process
Driver Audio Audio data Audio data Split L-R
Task Data Task stage 1 stage 2 channels

Process R Process L
DSP 1 channel channel
stage 3 stage 3
No Code Changes!
DSP 2 l
DSP 3 Process R Process L
channel channel
— stage 4 stage 4

DAC Play Process
REr Audio Audio data
task Data taSk Stage 6

Process
Audio data
stage 5

| 2>7_Jul<C
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Portable development

= Move on to the newest superduper DSP (when it finally gets
there...)

/ Virtuoso tasks & communication channels, on newest shithot DSP card \
| ADC | Read Process Process .
Driver Audio Audio data Audio data Split L-R
Task Data Task stage 1 stage 2 channels

Process R Process L
psP 1 Almost No Code Changes! cramel @l | cherme

Super
DSP 2

Driver code might need changes Process R

Play Process
B Audio Audio data P:;.)CZSS
Data task SECR G Audio data
\ | task 9 stage 5

Process L
channel channel
stage 4 stage 4

8
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Scalable systems

» Add processing power where needed
— example: image processing

/ Virtuoso tasks & communication channels, on single processor DSP card \

Split frame in
subframes,

frame
grabber

DSP 1

receive
frame

mailbox

display
new
image

-

and send

subframes to
Process
subframe

Mailbox
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Scalable systems

» Add processing power where needed:
— Possible by Virtuoso’s non-connection oriented API

/ Virtuoso tasks & communication channels, on single processor DSP card \

Split frame in
subframes,
and send
subframes to

Mailbox

Process Process Process Process
subframe subframe subframe subframe

dJ10

Mailbox

DSP 3

DSP 4

display
new
image

Join subframes

|
©
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Full application : include GUI

» Embedded DSP app with GUI front-end

/ GUI front-end Virtuoso tasks & communication channels, on specific DSP

[ 27-Jul-01 |

card
ADC Rea_d Proce_zss Process
ADC Driver Audio Audio Audio splt LR
Task Data data data AT
Task stage 1 stage 2
Parameter knobs,
monitor windows,
etc . rocess Process
Parameter settings L
& Control task channel channel
stage 3 stage 3
DSP 2
DSP 3
Process Process
Monitor T R L
onttor Tas DSP 4 channel channel
stage 4 stage 4
Front-end can be
I written in any )
— language, and run TCP/IP sockets, turned into
remotel "Host Channels" by|v4.2 Play Pracess
; g host server DAC Audio Audio ;‘ottzje.ss Channel
DAC Driver Data udio L
— bl W e s joiner
as as
[ stage 6 stage 5

N
H




The solution for SoC: Virtuoso Multicore

« Multicore = VSP with a number of additions
— heterogeneous: mix different processors together
— co-operative: bolt VSP on top of other OSes

— extensions to AS-DSP
. Generate RTOS primitives from spec

— Add HW development part

N
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Virtuoso VSP is the only available framework
for heterogeneous multicore ASIC / SoC

Tasks l.'l Tasks III. Tasks

Virtuoso Unified Programming Framework

Global routing and communications layer

VIirtuoso

HOST OS

F AS-DSP

RISC DSP FPGA




The MP-SoC-RTOS architecture

icno Portable &
y scalable
ailisApplication layer

=

N(? ﬁ'r\f@ el
ﬁ?& \\é yStem and comm | ‘_Q

7 _ HWinterface 1 >

| T | T AS-DSP
RISC D FPGA




Today : Virtuoso VSP off-the-shelf

Sharc w/
Virtuoso

Sharc w/

) Sharc w/
Virtuoso

Virtuoso

5
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Today : Heterogeneous VSP with host OS

these tasks can
call both Virtuoso
and WIinCE/EPOC
services

ARM w/
mbedded DSP

Virtuoso API Embedded DSP 2
using , w/ w/
Windows CE or EPO Virtuoso Virtuoso

scheduler
Current state-of-the-art ASIC

(o))

]
]
—
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Tomorrow : SOC or next generation DSP
Heterogeneous VSP with reprogrammable HW

ideal for coarser grained tasks
(frame/block processing) ideal for fine-grained tasks

ideal for control & GUI tasks :
(operating on sample streams)

The ideal
platform for
3G PDA
platforms

ARM w/
Virtuoso API
intermixed on

Windows CE or

EPOC

Embedded DSP 1
w/
Virtuoso

Next-next generation state-of-the-art ASIC
Current board level designs




MP-SoC today : lack of on-chip comm

« MP requires low latency, comm network

« Status today :
— AMBA (ARM and other) : designed for 1 RISC + peripherals
— CoreConnect (IBM) : idem
— VSIA : idem

— Others : SuperHyway (Hitachi), FISP (Mentor), Pl-bus
(OMI), FPI (Tri-Core), FPGA (do-what-you-want)

— Exception : SONICS (“SiliconBackplane”) : interface and
access timings synthesized at design time

=« Needed in future :
— local bus + on-chip point to point network
— crossbar for very large multicore
— arbritation in order of priority
— benefits : link synchronuous blocks asynchronously

8
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The needs for an on-chip standard
communication backbone

» Best example until now SiliconBackplane from Sonics
=« Maybe even better : GeodeLink (courtesy Kees Vissers)
=« Or IEEE1355 (SpaceWire) : also fault-tolerant
=« Hardware level :
— standard at electrical level (FIFO, DMA)
— generates of “stub” interface
« Software level :
— standard control and data interface
— minimum functionality
— FIFO buffers

— allows also template drivers to interface with hardware
stubs

©
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Another hurdle to overcome...

« HW centric thinking of SoC and DSP developers
— simulate/prove everything at the cycle level

— System level C language proposals are really for
hardware design using C...

= A truly SW centric approach is necessary to efficiently
program next generation SoC systems

= Also SW engineers need to learn to think parallel

= Major benefit :

keep same source code from [specification],
simulation, development to implementation,
re-mapping, upgrading and re-using blocks
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Conclusion

» RTOS is much more than real-time

« DSP systems are heterogeneous

« SO will future SoC component

« Hide complexity inside chip for hardware (in SoC chip)
« Hide complexity inside task for software (with RTOS)
=« RTOS comes from industrial experience

=« CSP provides unified theoretical base for hardware and
software, RTOS makes it pragmatic for real world :

— "“DESIGN PARALLEL, OPTIMIZE SEQUENTIALLY”

« Software meets hardware with same development paradigm

=« FPGA with macro-blocks is pre-cursor of next generation
SW defined SoC : needs SW development paradigm

« Time for asynchronous HW design ?
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