
27-Jul-01

1

From a distributed embedded RTOS to a
pragmatic framework for multi-core SoC.

The Future of RTOS for SoC

Eric.Verhulst@eonic.com

www.eonic.com

MP-SOC Workshop

27-Jul-01

2

RTOS for embedded DSP : the basics

! Real-Time & Multi-Tasking :
– scheduling of multiple tasks on single CPU
– priority used to meet real-time requirements

! Operating System :
– isolates processor hardware from application
– kernel services allow tasks to synchronize and

communicate
– interfaces tasks with I/0 through drivers

! Often neglected :
– protection : no MMU
– dynamic memory allocation : can be catastrophic
– parallel DSP : communication should be RTOS service
– heterogeneous systems : more often the reality

27-Jul-01

3

Types of scheduling

! Superloop :
– loops into single endless loop : [test, call function]

! Round-robin, FIFO :
– first in, first served
– cooperative multi-tasking, run till descheduling point

! Priority based, pre-emptive
– tasks run when executable in order of priority
– can be descheduled at any moment

! Earliest deadline first :
– most dynamic form : deadlines are time based
– but complex to use and implement
– granularity is an issue

27-Jul-01

4

Real-time trace : viewing the scheduling

27-Jul-01

5

Multi-tasking

! Origin :
– a software solution to a hardware limitation
– von Neuman processors are sequential, the real-world is

“parallel” by nature and software is just modeling
! How to ?

– A function is a [callable] sequential stream of instructions
– uses resources [mainly registers] => defines “context”
– non-sequential processing =

• switching between ownership of processor(s)
• reducing overhead by using idle time or avoid active wait :

– each function has its own workspace
– a task = function with proper context and workspace

27-Jul-01

6

A task is more

! Tasks need to interact
– synchronize
– pass data = communicate
– share resources

! a task = a virtual single processor
! a task = unit of abstraction
! a multi-tasking system emulates a real system
! developed out of embedded industrial needs
! theoretical model :

– CSP : Communicating Sequential Processes
– C.A.R. Hoare
– formal, but doesn’t match complexity of real world

27-Jul-01

7

Control flow, dataflow and time-triggered

! Three dominant real-time paradigms :
– control flow :

• event driven - asynchronous : latency is the issue
• traverse the state machine
• uncovered states generate complexity

– data-flow :
• data-driven : throughput is the issue
• multi-rate processing generates complexity

– time-triggered :
• play safe : allocate timeslots beforehand
• reliable if system is predictable

– REAL SYSTEMS : combination of above

27-Jul-01

8

DSP : the basics

! Any processor can execute a DSP algorithm
! But :

– DSP is real-time data processing at high rates :
• requires adequate concurrent I/O
• requires fast interrupt handling
• control code is barely an overhead on a DSP

– DSP often requires tight inner loop code
– DSP applications have other constraints as well :

• Power consumption : Ops/Watt
• Heat dissipation : convection cooled
• Performance density : Ops/mm2
• Cost density : Ops/$

– DSP must scale I/O and processing
– DSP is diverse because of the data types :

• fixed point 16/24/32 bit, floating point 32/64bit, composite

27-Jul-01

9

DSP : the future

! The challenge :
– stretching the von Neuman machine :

• throughput processing : VLIW, multiple ALU, pipelining
• multimedia : mixed datatypes
• memory speed < CPU speed
• I/O : DMA

– boundary conditions :
• size : as small as a stamp
• power consumption : runs on an AA battery for days
• heat : so cool you can touch it
• processing power : multiples of 10 Gops/sec
• I/O bandwidth : multiples of 1 Gbit/sec

27-Jul-01

10

How will it look like (1) ?

! Technology enabled :
– shrinking line widths (0.13 um and less)
– copper interconnects
– lower supply voltage
– dynamic frequency and voltage control

! Challenges :
– NRE cost doubles, while line width shrinks
– frequencies are in the RF, even radar range
– packaging and I/O (incl.. Memory) are the real

bottlenecks
! Facts :

– single clock 1Bn gates on-a-chip is not trivial
– power consumption = F(Hz, Vcc)

27-Jul-01

11

How will it look like (2) ?

! Conclusion :
– multi-core, course grain asynchronous SoC design
– cores as proven components -> well defined interfaces
– keep critical circuits inside
– simplify I/O :

• high speed serial links
– NRE dictates high volume -> more reprogrammability
– system is now a component
– below minimum thresholds of power and cost, it becomes

cheap to “burn” gates
– software becomes the differentiating factor

27-Jul-01

12

The next generation SoC with DSP

GP-RISC(s)

GP-DSP(s)

Cross-bar

A-DSP

FS-DSP Logic

Memory

General Purpose I/O

General Purpose FPGA Logic

Vcc

Gbit/s LVDS I/O

Bulk Memory

Inter SoC Links

I/O Devices

Network Interfaces

27-Jul-01

13

Complexity is the driving force behind the
software dominance in applications

! Processor performance
doubles every year

! Complex requirements

! Shorter time-to-market

Software driven design
concept

because

software dominates the
application

In a hardware driven world, this is almost like a
revolution. Software focused approaches lead it.

27-Jul-01

14

Example : the Virtuoso software RTOS tool as
design approach for the Atlas DSP system

Virtuoso™
RTOS for DSP
Development
Environment

! Easy and fast
development of multi-
processor and
heterogeneous DSP
and ASIC applications

– Reduces
development time

– Safe: portability
and scalability

Atlas™
Universal Digital
Signal Computer

! In no time to real-time
DSP

– Rapid Prototyping
– Reliable & fast

development
– Scaling up or

down
– Open deployment

DSP System
Design Services

! Can deliver a
complete DSP system
solution from A-Z

– In-depth
knowledge of
DSPs

– System
Architecture
expertise

27-Jul-01

15

Hardware becomes software at board level

SPORT-
IF

IRQ-
CTRL

Clock,
Trigger

IP-
IF

LINK-
IF

Bus-
CTRLDecoder Watchdog

FPGA
PLX

CPCI

S-LINKs

Address
Data
Control

Trigger etc.
“The Brain”

Logic +
Algorithms

IP-A, 1xAD-Converter

in

DSP Memory

DSP Memory
IP-B, 4xDA-Converter

out

Algorithms

S-LINKs

Optional

Host

27-Jul-01

16

Atlas 3-C6202/3 block diagram

1x

1x

DSP1
 Options:
 TMS320C6202
 TMS320C6202B
 TMS320C6203

32
bi

t/3
3M

H
z C

om
pa

ct
PC

I P
1 C

on
ne

ct
or

U
se

r I
/O

 C
om

pa
ct

PC
I P

2 C
on

ne
ct

or

PLX
PCI9054

32
 b

it
M

as
te

r/
Ta

rg
et

In
te

rfa
ce

32Bit @ 33MHz

32
 b

it M
as

te
r /

Ta
rg

et
 In

te
rfa

ce

PMC Site

2
DMAs

6 unidirectional Links, LVDS 16xInput/16xOutput

6
bi

-
di

re
ct

io
na

l
FI

FO
s

w
ith

 s
hi

ft
un

its
C

lo
ck

 +
Tr

ig
ge

r

4
x

Tr
ig

ge
r

PM
C

IF
(6

4
Bi

t @
 6

6M
H

z)
Su

pp
or

t U
ni

t
U

AR
T

R
S2

32
H

ea
de

r
(o

n-
bo

ar
d)

LE
D

s

Prog. IF

TI JTAG
Emulator
Header

(on-board)

Hot Sw ap
Controller

5V / 3.3V / +/-
12V

Altera FPGA
20k400E-1X

(672 Pin FBGA)

Te
m

p.
M

on
ito

r

Eonic Confidential Atlas3-C62x KRo July-12-2000

DSP2
 Options:
 TMS320C6202
 TMS320C6202B
 TMS320C6203

FLASH
4M x 8 (32MBit)

SDRAM
4M x 32 (128MBit)
more if possible

Ex
pa

ns
io

n
Bu

s
Ex

pa
ns

io
n

Bu
s

EM
IF

32
bi

t @
 1

00
M

H
z

SDRAM
4M x 32 (128MBit)
more if possible EM

IF

JT
AG

NOTES:
1. IF = "Interface"
2. Boundary Scan not available on
PCI9054. (NAND-TREE)
3. McBSP = "Multi Channel Buffered
Serial Port"

64Bit @ 66MHz

x 4

13 x Clock, Trigger

M
ul

ti-
Po

in
t-t

o-
Po

in
t B

us

JTAG

JTAG

During
Production:

Boundary Scan
Header

IEEE1194.1
(on-board)

3 x Interrupt
3 x McBSP

Central Control
cPLD:

 - Exp. Bus Arbiter
 - FPGA Prog. IF

JT
AG

Fr
on

t-P
an

el

FLASH
4M x 8 (32MBit)

Ex
pa

ns
io

n
Bu

s
to

FP
G

A I
F1

(3
2

Bi
t @

 5
0M

H
z)

32
bi

t @
 1

00
M

H
z

3,
3V

 +
 5

V
to

le
ra

nt

3,
3V

 o
nl

y
to

le
ra

nt

J1 - J3

J4-I/O
TBD

ALTERA
JTAG Prog.

Interface
Header

(on-board)

During
Production:

Boundary Scan
Header

IEEE1194.1
(on-board)

2 x
Timer

32 Bit @ 50MHz

Ex
pa

ns
io

n
Bu

s
to

FP
G

A I
F2

(3
2

Bi
t @

 5
0M

H
z)

3 x Interrupt
3 x McBSP

2 x
Timer

32 Bit @ 50MHz

XBUS
Interrupt
Router

1x

1x

1xbi
di

r.
FI

FO

27-Jul-01

17

FPGA content as IP : a general purpose I/O and
communication engine

Eonic Confidential

UART
16550 compatible

Support Unit
Temperature Monitor

LEDs

PCI-IF
32/64bit@33/66MHz

4xTrigger

Trigger-Bus
13xI/O

Expansion-Bus-IF
DSP2

4xIRQ
2xTimer

3xMcBSP

LINK-IF
16xLVDS Input

16xLVDS Output
3xClock

1xdeSkew
1xGPIO

Expansion-Bus-IF
DSP1

4xIRQ
2xTimer

3xMcBSP

FIFOFIFO

JTAG Configuration-IF

X-Bus1

X-Bus2

J1-3

LVDS-Out

LVDS-In

8b
it

pa
ra

lle
l

I/O-Engine

I/O-Engine

I/O-Engine

I/O-Engine

I/O-Engine

I/O-Engine

Sw
itc

h-
M

at
rix

I/O-Engine

pr
og

ra
m

m
ab

le
 C

lo
ck

-S
yn

th
es

iz
er

S
yn

ch
ro

ni
za

tio
n

Tr
ig

ge
r

S
tro

be

I/O-Engine

IRQ-Controller

Atlas3-C62x FPGA Functionality

Clock-Generation
4xPLL

to
 P

M
C

-M
ez

za
ni

ne

Clock-
Input

G
lo

ba
l

R
es

et

Watchdog

here to insert customer
application specific algorithm

GPIO

12xEMIF
CS

TBD

12xEMIF
CS

TBD

TBDJ4
PMC_I/O

! FPGA implements 90
% of all gluelogic on
board

! Inter-processor
communication using
DMA and high speed
LVDS

! Intelligent I/O to offload
processor (IO-engine)

! Creates processor
independent
communication and I/O
block

! Remaining gates for
processing in I/O
stream

! Fully supported by
Virtuoso’s VSP model

What is Virtuoso ?

! A Real Time Operating System (RTOS) at the core
! Creates independence of the HW from the SW

– “Virtual Single Processor” model
! Created By Eonic Systems, now owned by Wind River

Host-OS DSP & RISC AS-DSP
Host OS

FPGA or
Custom Logic

Unifying Programming Framework

ApplicationSW

RTOS
(SW)

HW

Virtuoso Virtuoso Virtuoso Virtuoso

27-Jul-01

19

Beyond the RTOS

! Multi-tasking = Process Oriented Programming
! A Task =

– Unit of execution
– Encapsulated functional behavior
– Modular programming

! High Level [Programming] Language :
– common specification :

• for SW
– compile to asm

• for HW
– compile to VHDL or Verilog

– enabler for SoC “co-design”

27-Jul-01

20

System level design inspired by CSP :
processes are abstract building blocks

Channel put operation

Channel get operation

ISR

f1 f5

f2

f0

f0

f12

f4

a process based system

Channel operation to interface with HW and other processes

Process
Channel

27-Jul-01

21

Virtuoso’s Virtual Single Processor :
a pragmatic CSP : distributed semantics

Sampling Task1 Monitor Task

Console Input Driver

Console Output Driver

Input Queue

Output Queue

Sampling Task2

Mail Box1

Sema1

Sema2

Sema3

Display Task

+

Node1

Node2

Node 3

+

+

RTOS Objects :
- tasks
- drivers
- binary events
- counting semaphores
- FIFO queues
-mailbox/messages
-channels
-resources (=mutex)
- memory maps/pools

27-Jul-01

22

Kernel services : an orthogonal set

! Events : binary data, one to one, local -> interface to HW
! [counting] semaphore : events with a memory, many to

many, distributed
! FIFO queue : simple and static datacomm between tasks,

many to many, distributed
! Mailbox : variable size datacomm between tasks, rendez-

vous, one/many to one/many, distributed
! Channels : variable datasize, between tasks and/or host

service, asynchronous on send and receive, distributed
! Resources : ownership protection, priority inheritance
! Memory maps/pools
! semantic issues : distributed, group operators, blocking,

non-blocking, time-out

27-Jul-01

23

Teaching Environment for Virtuoso

27-Jul-01

24

The unique Virtual Single Processor (VSP) model

! Multitasking and message passing
! Process oriented programming
! Interfacing using communication protocols

! Transparent parallel programming
– Cross development on any platform + portability
– Scalability, even on heterogeneous targets

! Distributed semantics
– Program logic neutral to topology and object mapping
– Clean API provides for less programming errors
– Prioritized packet switching communication layer

! Based on “CSP” (C.A.R. Hoare): Communicating Sequential
Processes: VSP is pragmatic superset

27-Jul-01

25

Layered model :
separate system from application

Micro-
kernel

Task-1 Task-i

Proc-1

ISR1

ISR0

Nanokernel

Pre-emptive
Prioritized Tasks +
“Background”

Prioritized
Processes :
System level

Prioritized
ISRs

FIFO-ed
ISRs

Removable

20 to 40K instructions

2 to 4K instructions

27-Jul-01

26

Hierarchy = prioritization

Data ready

IRQ

Driver Process

System Process

Background task low prio

DMA

Background task high prio

27-Jul-01

27

Hierarchy and HW and time resources

Abstract behavior
Application level
SW flexibility
High Level Language
Register context
Memory use
System level
Latency
Data packet sizes
Hardware determinism

27-Jul-01

28

Implementation of VSP model

! Application tasks preemptively scheduled by local
microkernel, full context

! Local nanokernel “processes” :
– Reduced context (some assembly required)
– Prioritized FIFO scheduler
– Used for microkernel process and drivers

! Remote services :
– Detected by objectID of invoked kernel object
– Microkernel passes command packets to communication

layer
– Communication layer (on “netlinks”) :

• prioritized packet switching
• Parallel paths possible
• Local buffers for throughput routing
• Deadlock free

CSP at the HW level

! Request/Ack protocol assures correct data transfer between async
units, even at the register level

! Is like the mailbox mechanism

Sender

Receiver

Req

Ack

Data
BUF

27-Jul-01

30

RTOS objects : mapping onto HW

+

Software

Task - Process

KS_FifoPutW

KS_MsgPutW

KS_SemaSignal

Hardware

Logic State Machine

FIFO memory

shared memory + dma

status register + counter

RTOS objects can be used for SW+HW system
specification, simulation and implementation

27-Jul-01

31

A SW-HW implementation (see slide 21)

Monitor Task

Display ControllerOutput FIFO

A/D channel1

Mail Box1

Processing
Task

A/D channel2

Buf1

Buf2

Reg1

Reg2Core CPU

DMA

DMA

DMA
Steps :

1. Algorithm using MATLAB/
SDT, Pegasus, ...

2. Simulate logic model
with RTOS simulator on
host OS like NT

3. Run RTOS program on
target CPU

4. Map parts onto SW
(C to ASM - binary)
map parts onto HW
(C to VHDL or RTL)

27-Jul-01

32

How to get there ? Virtuoso VSP

! Example: audio application

Audio In

Audio out

Read
Audio

Data Task

Process
Audio data

stage 1

Process
Audio data

stage 2

Split L-R
channels

Process R
channel
stage 3

Process L
channel
stage 3

Process R
channel
stage 4

Process L
channel
stage 4

Play
Audio

Data task

Process
Audio data

stage 6

Process
Audio data

stage 5

Channel joiner

! Start with a block diagram

27-Jul-01

33

Early development

! Prototype development: Virtuoso simulator on workstation

Virtuoso tasks & communication channels, on simulator using VC++

Audio In

Audio out

Read
Audio

Data Task

Process
Audio data

stage 1

Process
Audio data

stage 2

Split L-R
channels

Process R
channel
stage 3

Process L
channel
stage 3

Process R
channel
stage 4

Process L
channel
stage 4

Play
Audio

Data task

Process
Audio data

stage 6

Process
Audio data

stage 5

Channel joiner

Named pipes, turned into
"Host Channels" by v4.2

host serverSmall Windows
application, getting audio

from soundcard, and
playing on soundcard

27-Jul-01

34

Early development

! Profiling/benchmarking: COTS DSP HW

Virtuoso tasks & communication channels, on COTS DSP card

Audio In

Audio out

Read
Audio

Data Task

Process
Audio data

stage 1

Process
Audio data

stage 2

Split L-R
channels

Process R
channel
stage 3

Process L
channel
stage 3

Process R
channel
stage 4

Process L
channel
stage 4

Play
Audio

Data task

Process
Audio data

stage 6

Process
Audio data

stage 5

Channel joiner

Named pipes, turned into
"Host Channels" by v4.2

host serverSmall Windows
application, getting audio

from soundcard, and
playing on soundcard

No Code Changes!

27-Jul-01

35

Early development

! Deployment: specific DSP HW, with on-board I/O

DAC
DAC

Driver
task

ADC
ADC
Driver
Task

Virtuoso tasks & communication channels, on specific DSP card

Read
Audio

Data Task

Process
Audio data

stage 1

Process
Audio data

stage 2

Split L-R
channels

Process R
channel
stage 3

Process L
channel
stage 3

Process R
channel
stage 4

Process L
channel
stage 4

Play
Audio

Data task

Process
Audio data

stage 6

Process
Audio data

stage 5

Channel joiner

v4.2 target channelsNew, HW
specific code

27-Jul-01

36

Distribute processing

! distribute tasks over different DSP processors

DAC
DAC
Driver
task

ADC
ADC
Driver
Task

Virtuoso tasks & communication channels, on specific DSP card

Read
Audio

Data Task

Process
Audio data

stage 1

Process
Audio data

stage 2

Split L-R
channels

Process
R channel

stage 3

Process L
channel
stage 3

Process
R channel

stage 4

Process L
channel
stage 4

Play
Audio

Data task

Process
Audio data

stage 6

Process
Audio data

stage 5

Channel joiner

No Code Changes!
DSP 2

DSP 4

DSP 1

DSP 3

DSP 6

DSP 5

27-Jul-01

37

Tune processing

! Introduce hand-optimized algorithms ⇒ less processing power

DAC
DAC

Driver
task

ADC
ADC
Driver
Task

Virtuoso tasks & communication channels, on specific DSP card

Read
Audio

Data Task

Process
Audio data

stage 1

Process
Audio data

stage 2

Split L-R
channels

Process R
channel
stage 3

Process L
channel
stage 3

Process R
channel
stage 4

Process L
channel
stage 4

Play
Audio

Data task

Process
Audio data

stage 6

Process
Audio data

stage 5

Channel joiner

No Code Changes!
DSP 2

DSP 4

DSP 1

DSP 3

27-Jul-01

38

Portable development

! Move on to the newest superduper DSP (when it finally gets
there…)

DAC
DAC

Driver
task

ADC
ADC
Driver
Task

Virtuoso tasks & communication channels, on newest shithot DSP card

Read
Audio

Data Task

Process
Audio data

stage 1

Process
Audio data

stage 2

Split L-R
channels

Process R
channel
stage 3

Process L
channel
stage 3

Process R
channel
stage 4

Process L
channel
stage 4

Play
Audio

Data task

Process
Audio data

stage 6

Process
Audio data

stage 5

Channel joiner

Almost No Code Changes!
Super
DSP 2

Super
DSP 1

Driver code might need changes

27-Jul-01

39

Scalable systems

! Add processing power where needed
– example: image processing

DAC

frame
grabber

Virtuoso tasks & communication channels, on single processor DSP card

receive
frame

Split frame in
subframes,
and send

subframes to
mailbox

display
new

image Join subframes

DSP 1

Mailbox

Process
subframe

Mailbox

27-Jul-01

40

Scalable systems

! Add processing power where needed:
– Possible by Virtuoso’s non-connection oriented API

DAC

frame
grabber

Virtuoso tasks & communication channels, on single processor DSP card

receive
frame

Split frame in
subframes,
and send

subframes to
mailbox

display
new

image Join subframes

DSP 1

Mailbox

Process
subframe

Process
subframe

Process
subframe

DSP 2

DSP 3

DSP 4

Process
subframe

Mailbox

DSP 5

27-Jul-01

41

Full application : include GUI

! Embedded DSP app with GUI front-end

DAC
DAC
Driver
task

ADC
ADC

Driver
Task

Virtuoso tasks & communication channels, on specific DSP
card

Read
Audio
Data
Task

Process
Audio
data

stage 1

Process
Audio
data

stage 2

Split L-R
channels

Process
R

channel
stage 3

Process
L

channel
stage 3

Process
R

channel
stage 4

Process
L

channel
stage 4

Play
Audio
Data
task

Process
Audio
data

stage 6

Process
Audio
data

stage 5

Channel
joiner

DSP 2

DSP 4

DSP 1

DSP 3

GUI front-end

Parameter knobs,
monitor windows,

etc...

TCP/IP sockets, turned into
"Host Channels" by v4.2

host server

Front-end can be
written in any

language, and run
remotely

Parameter settings
& Control task

Monitor Task

27-Jul-01

42

The solution for SoC: Virtuoso Multicore

! Multicore = VSP with a number of additions
– heterogeneous: mix different processors together
– co-operative: bolt VSP on top of other OSes
– extensions to AS-DSP

• Generate RTOS primitives from spec
– Add HW development part

27-Jul-01

43

Virtuoso Unified Programming Framework

Virtuoso VSP is the only available framework
for heterogeneous multicore ASIC / SoC

HOST OS
Virtuoso VirtuosoVirtuoso

Tasks TasksTasks

DSP

AS-DSP

FPGA

Comm Comm

Global routing and communications layer

RISC

27-Jul-01

44

The MP-SoC-RTOS architecture

DSP

Comm Comm

RISC

AS-DSP

FPGA

HW interface
System and comm layer

Portable &
scalable

Application layer

27-Jul-01

45

Today : Virtuoso VSP off-the-shelf

Task 1

Task 2

Task 3

task 4

task 5

task 6

task 7ch 1
ch 9

ch 10ch 7
ch 8

ch 5

ch 6

ch 4

ch 3

ch 2

Sharc w/
Virtuoso

Sharc w/
Virtuoso Sharc w/

Virtuoso

27-Jul-01

46

Today : Heterogeneous VSP with host OS

Task 1

Task 2

Task 3

task 4

task 5

task 6

task 7ch 1
ch 9

ch 10ch 7
ch 8

ch 5

ch 6

ch 4

ch 3

ch 2

ARM w/
Virtuoso API

using
Windows CE or EPOC

scheduler

Embedded DSP 1
w/

Virtuoso

Embedded DSP 2
w/

Virtuoso

Current state-of-the-art ASIC

these tasks can
call both Virtuoso
and WinCE/EPOC

services

27-Jul-01

47

Tomorrow : SOC or next generation DSP
Heterogeneous VSP with reprogrammable HW

The ideal
platform for

3G PDA
platforms

Task 1

Task 2

Task 3

task 4

task 5

task 6

task 7ch 1
ch 9

ch 10ch 7
ch 8

ch 5

ch 6

ch 4

ch 3

ch 2

ARM w/
Virtuoso API
intermixed on

Windows CE or
EPOC

Embedded DSP 1
w/

Virtuoso
FPGA

C-to-FPGA compiler

Next-next generation state-of-the-art ASIC
Current board level designs

ideal for fine-grained tasks
(operating on sample streams)

ideal for coarser grained tasks
(frame/block processing)ideal for control & GUI tasks

27-Jul-01

48

MP-SoC today : lack of on-chip comm

! MP requires low latency, comm network
! Status today :

– AMBA (ARM and other) : designed for 1 RISC + peripherals
– CoreConnect (IBM) : idem
– VSIA : idem
– Others : SuperHyway (Hitachi), FISP (Mentor), PI-bus

(OMI), FPI (Tri-Core), FPGA (do-what-you-want)
– Exception : SONICS (“SiliconBackplane”) : interface and

access timings synthesized at design time
! Needed in future :

– local bus + on-chip point to point network
– crossbar for very large multicore
– arbritation in order of priority
– benefits : link synchronuous blocks asynchronously

27-Jul-01

49

The needs for an on-chip standard
communication backbone

! Best example until now SiliconBackplane from Sonics
! Maybe even better : GeodeLink (courtesy Kees Vissers)
! Or IEEE1355 (SpaceWire) : also fault-tolerant
! Hardware level :

– standard at electrical level (FIFO, DMA)
– generates of “stub” interface

! Software level :
– standard control and data interface
– minimum functionality
– FIFO buffers
– allows also template drivers to interface with hardware

stubs

27-Jul-01

50

Another hurdle to overcome...

! HW centric thinking of SoC and DSP developers
– simulate/prove everything at the cycle level
– System level C language proposals are really for

hardware design using C…
! A truly SW centric approach is necessary to efficiently

program next generation SoC systems

! Also SW engineers need to learn to think parallel

! Major benefit :

keep same source code from [specification],
simulation, development to implementation,
re-mapping, upgrading and re-using blocks

27-Jul-01

51

Conclusion

! RTOS is much more than real-time
! DSP systems are heterogeneous
! So will future SoC component
! Hide complexity inside chip for hardware (in SoC chip)
! Hide complexity inside task for software (with RTOS)
! RTOS comes from industrial experience
! CSP provides unified theoretical base for hardware and

software, RTOS makes it pragmatic for real world :
– “DESIGN PARALLEL, OPTIMIZE SEQUENTIALLY”

! Software meets hardware with same development paradigm
! FPGA with macro-blocks is pre-cursor of next generation

SW defined SoC : needs SW development paradigm
! Time for asynchronous HW design ?

