Application specific Multi-Processor SoC

System-Level Synthesis Group

TIMA Laboratory

46 Avenue Felix Viallet 38031 Grenoble Cedex France Tel: +33 476 57 47 59

Fax: +33 476 47 38 14

Email: Ahmed.Jerraya@imag.fr

Ahmed Jerraya

- 1.- Network and System on Chip Design
- 2.- HW-SW Communication bottleneck
- 3.- Roses: Component Based Design
- 4. A VDSL design example
- 5.- Status and conclusions

Ahmed A. Jerraya

MPSOC 2002 - 3

Networks and System on Chip

- SoC: put on a chip what we used to put on boards, 2004:
 - ITRS, 70% of ASICS will be SoC
 - 10 000 SoC designs, 32 Bn\$ Market
- Multi-processor:
 - More than one instruction set processor on chip
 - Complex HW/SW communication
- NOC: Network on Chip:
 - Multiple HW-SW Cores for computation
 - On chip communication network
- Challenges
 - ASIC design approaches do not scale
 - ASIC designers difficult to adapt (<10% will make it)

SOC/NOC Architectures

Heterogeneous Hardware :

- Specific hardware (DSP, MCU ASIC, IP, Memory, non digital....)
- Communication Network (Bus, Switched)
- Glue, non structured logic to links components to Network

Sophisticated software :

- High level SW (Application/OS)
- Low level hand coded SW (Dedicated CPU, ASIP, DSP)
- SW code to test Hardware

SoC/NoC Design

Challenges

- 200 Million gates SoC, 6 000 000 lines of RTL code, 600 MY effort
- Dedicated Software complexity larger than HW in 2005
- SW code to test HW, 70% design cost for multi-processor SoCs
- Multiple Instruction set processors

Current SoC design

- RTL design for hardware System interconnects
- Low level hand coded software for dedicated processors (e.g. DSP)
- Low level hand coded test programs
- Cycle true co-simulation using multiple ISSs

Requirements

- Design at a higher level than RTL of hardware interconnect
- Higher level code for dedicated software and test Programs.
- Global mixed and multilevel validation

- 1.- Network and System on Chip Design
- 2.- HW-SW Communication bottleneck
- 3.- Roses: Component Based Design
- 4. A VDSL design example
- 5.- Status and conclusions

Ahmed A. Jerraya MPSOC 2002 - 7

HW/SW communication design (1)

(1) Single microprocessor

- Layered & hierarchical architecture to master complexity and coordination between multiple design teams
- Requires a combination of methods and tools that belong to different communities
- The bottleneck: HW/SW communication design and debug

- 1.- Network and System on Chip Design
- 2.- HW-SW Communication bottleneck
- 3.- Roses: Component Based Design
- 4. A VDSL design example
- 5.- Status and conclusions

Ahmed A. Jerraya MPSOC 2002 - 15

Key point: Structuring SoC Design Wrappers to abstract component interfaces **Custom OS to abstract architecture** Concurrent design, debug to cut down TTM and debug efforts Abstract SW code for Test **Application Functions** API Abstract code **OS** services (scheduler, IT, I/O, ...) API BSP **Custom OS** BSP **Communication Networks** MPSOC 2002 - 16 Ahmed A. Jerraya

Multicore SoC design automation

- System Specification as virtual architecture: Virtual modules use wrappers to abstract HW/SW communication, Standard SW C++/SystemC Built on top of CSAPI
- Architecture implementation as: heterogeneous components and sophisticated on-chip communication interconnect linked through HW and SW wrappers, Same SW code, runs on implementation on top of OS
- Automatic generation of application-specific on-chip HW/SW communication: HW/SW CSAPI implementation

Ahmed A. Jerraya

MPSOC 2002 - 17

Virtual Architecture Model

- Basic model: a set of hierarchically interconnected modules representing an abstract architecture
- Basic concepts: module wrapper to isolate computation from communication
 - Internal port: connects behavior
 - External port: connects communication network
 - Virtual port: set of internal/external ports with communication API
- SystemC extended with virtual objects: virtual module, virtual port and virtual channel
- Execution model through automatic wrapper generation

System Specification

System Architecture
MPSOC 2002 - 18

Ahmed A. Jerraya

- 1.- Network and System on Chip Design
- 2.- HW-SW Communication bottleneck
- 3.- Roses: Component Based Design
- 4. A VDSL design example
- 5.- Status and conclusions

VDSL application: The Subset

Inter processor communication.

Ahmed A. Jerraya

- Communication between processor and ASIC.
- Parallel communicating tasks

MPSOC 2002 - 26

different communication protocols.

Ahmed A. Jerraya MPSOC 2002 - 25

The specification VM1 VM2 M1 Powerful modular scheme Parallel SW tasks, Sophisticated functions or test Programs Clear separation between communication and computation Reference model for all designers (HW, SW, SoC)

VDSL design results (summary)

- Design effort gain: 15x (5 m.y vs. 4 person. months)
- Virtual architecture model: 1760 lines
- RTL architecture (0.35μm technology):

OS results	# of lines in C	# of lines in Assembly	Code size (bytes)	Data size (bytes)
VM1	968	281	3829	500
VM2	1872	281	6684	1020
Context switch	h (cycles)	36		
Latency for in	terrupt treatme	59 (OS) + 28 (ARM7)		
System call la	atency (cycles)	50		
Resume of ta	sk execution (26		

Communication coprocessors	# of gates	Critical path delay (ns)	Max. freq. (MHz)
VM1	3284	5.95	168
VM2	3795	6.16	162
Latency for read op	6		
Latency for write op	2		
Number of code line	2168		

Ahmed A. Jerraya MPSOC 2002 - 29

Conclusion

- Network and System-on-Chip:
 - CPU(s) + IP(s) + on-chip communication
- Design bottleneck: HW/SW interfaces
- Structuring SoC Design
 - API separates Application SW from OS
 - Wrappers separate IP(s) from Network
- Perspectives:
 - HW-SW interfaces Debug and Test
 - Partitioning HW/SW interfaces
 - **■** Computation/Communication Partitioning

Readings about MP_SoC

- 1. D.E. Culler, J. Pal Singh, "Parallel Computer Architecture," Morgan Kaufmann Publishers, 1999.
- Oka and Suzuoki, "Designing and Programming the Emotion Engine," IEEE Micro, vol. 19:6, pp. 20-28, Nov/Dec 1999.
- M. Diaz-Nava, G.S. Okvist, "The Zipper prototype: A Complete and Flexible VDSL Multi-carrier Solution", ST Journal special issue xDSL, September 2001.
- 4. J. T. J. van Eijndhoven, al. "TriMedia CPU64 Architecture," ICCD, Austin, TX, 1999, pp. 586-592.
- K. Keutzer, "A Disciplined Approach to the Development of Platform Architectures," Synthesis and System Integration of Mixed Technologies, SASIMI, Nara, Japan, October 18 - 19, 2001.
- K. Keutzer, et al., "System-level design: orthogonalization of concerns and platform-based design," IEEE TCAD, Dec. 2000.
- M. Sgroi, et al., "Addressing the System-on-Chip Interconnect Woes Through Communication-Based Design," Proc. of 38th Design Automation Conference, Las Vegas, June 2001.
- 8. IBM Inc., Blue Logic Technology, http://www.chips.ibm.com/bluelogic/
- 9. D. Wingard, "MicroNetwork-Based Integration for SOCs," Proc. of DAC, Las Vegas, June 2001.
- J. A. J. Leijten et al., "PROPHID: A Heterogeneous Multi-Processor Architecture for Multimedia," Proc. of ICCD, 1997.
- 11. L. Benini, G. De Micheli, "Networks on chips: A New SoC Paradigm", Computer, Vol. 35 No 1, pp. 70-78, January 2002.
- 12. K. Goossens, E. Rijpkema, P. Wielage, A. Peeters and J. van Meerbergen, "Networks on Silicon: The next Design paradigm for systems on Silicon", DATE 2002, Paris, France, March 2002.

Ahmed A. Jerraya MPSOC 2002 - 31

Readings about Roses

- W. CESARIO, al., "Component-Based Design Approach for Multicore SoCs", DAC'02, New Orleans, USA June 10-14 2002.
- S. Yoo, al. « A Generic Wrapper Architecture for Multi-Processor SoC Cosimulation and Design », CODES, 2001.
- W.O. Cesario, al. "Colif: a Multilevel Design Representation for Application-Specific Multiprocessor System-on-Chip Design", IEEE Design & Test, Sept, 2001.
- A. Baghdadi, al. « An Efficient Architecture Model for Systematic Design of Application-Specific Multi-processor SoC », Design Automation and Test in Europe, March, 2001.
- L. GAUTHIER, al., "Automatic Generation and Targeting of Application Specific Operating Systems and Embedded Systems Software", TCAD, IEEE Transactions on Computer-Aided Design, Vol. 20 Nr. 11, November 2001.
- D. Lyonnard, al. "Automatic Generation of Application-Specific Architecture for Heterogeneous Multiprocessor System-on-Chip", DAC, June, 2001.
- S. YOO, G. NICOLESCU, L. GAUTHIER, A.A. JERRAYA, "Automatic Generation Including Fast Timed Simulation Models of Operating Systems in Multiprocessor SoC Communication Design", DATE 2002, Paris, France, March 2002.
- P. Gerin, al. « Scalable and Flexible Co-simulation of SoC Design with heterogeneous Multiprocessor Target Architecture », Asia South Pacific Design Automation conference, January, 2001.
- F. GHARSALLI, al., "Embedded Memory Wrapper Generation for Multiprocessor SoC", DAC'02, June 10-14 2002, New Orleans, USA.