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About this lecture

= Huge literature on scheduling theory

= Aim is to give an overview of problems and

possible solutions to the multi-task scheduling

problem related to RTOS
= Structure of lecture:

= Some basic concepts and teminology

= Uni-processor scheduling
= Rate-monotonic scheduling

= Earlies-deadlines-first scheduling

= Multi-processor scheduling
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Architecture

= Components
= Processors
= CPU, DSP, ASIC, ...

= Communication
= Bus, network, ...

= Devices
= sensor, actuator, display, ...
= Architecture may be fixed
or (re-)configurable
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Application

= Task

= A module which can be envoked to perform a
particular function

= A schedulable entity

= Characterized by its: @ /@
= Timing constraints @
= Precedence contraints @

= Exclusion constraints
= Resource requirements
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Timing constraints
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r, = time at which task becomes released (or active)
s, = time at which task starts its execution

e, = worst case execution time (WCET)

d, = deadline, task should complete before this!

T, = period, minimum time between process releases
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Task execution

= Periodic

= the period is the time between successive executions
= Aperiodic

= non-periodic task, typical an event handler
= Sporadic

= hard real-time aperiodic task

= typical, a minimum interarrival constraint is imposed

DTU
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Scheduling
= Allocation
= Determine number and type of processors/resources
= Assignment
= Binding tasks to processors
= Scheduling
= Determine execution order
Ol I = [al| 47 77
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Scheduling principles

= Off-line

= A scheduler performing its job before the scheduled
system is put into operation

= On-line

= A scheduler performing its job at run-time, when the
system is running

= Typically list-based
= When a task is released (ready) it is placed in a list

= Scheduler select which task from the list to execute next
= Selection based on some criteria — scheduling policy
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Preemption vs. Non-preemption
= Preemptive scheduling
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= Non-preemptive scheduling
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Uni-processor scheduling
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Rate-monotonic scheduling

= Real-time scheduling with provable properties
[Liu and Layland 73]
= Assumptions:
= Each task is independent and given a unique priority
= A task may be preempted by a higher-priority process

= All tasks have a deadline equal to their period and a
fixed WCET

= Context switching overhead is ignored
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RMS
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= The critical instance for a task occurs when the

task and all higher-priority tasks are released
simultaneously

= Must guarantee that all tasks meet their
deadlines, independent of order of releases
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RMS example
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Rate-monotonic priority assignment

= Each task is given a unique priority where 1 is the
highest
= Priority policy:
= Task with shortest period gets highest priority
= Fixed-priority scheme
= Independent of ¢,s
= This priority assignment is optimal

No fixed priority scheme does it better!

DTU
Eemal
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RMS example (cont.)
T; e priority
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CPU utilization under RMS

= Given N independent tasks, utilization U

i=1
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= Least upper bound for utilization
Upyr <NQ"™ = 1)

lim (N2"™ —1)=69.3%
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RMS example (cont.)
T € priority u
O 50 12 1 0.24
©) 40 10 2 0.25
©) 30 10 3 0.33
0.82
Upy =302 -1)=0.78
U £ Uy
DTU
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RMS example (cont.)
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RMS
= The utilization-based schedulability test is
sufficient but not necessary
= If the test is passed it is schedulable
= If the test is not passed, it may be schedulable
= |If all tasks meet their first deadline then they will
meet all future ones
DTU
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Earliest-Deadline-First Scheduling

Dynamic priority scheme
Changes priorities during execution based on
release times

Can achieve higher CPU utilization than RMS,
i.,e. 100%

Priority policy:
= task with closest deadline gets highest-priority
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RMS example
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RMS example scheduled using EDF
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Comparing RMS and EDF

= Higher CPU utilization with EDF

= Easier to ensure that deadlines will be satisfied

with RMS
= RMS easier to implement
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Multi-processor scheduling
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Multi-processor scheduling

= Primary objective is to ensure that all timing
constraints are met

= Serious difficulties in validating hard timing
constraints

= Assumptions:
= Each task has its own scheduler

= The scheduler uses a uni-processor scheduling
algorithm

= Schedulers on different processors need not use the
same algorithm

=
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Multi-processor scheduling

= Task assignment

= Most real-time systems are static, tasks are partitioned
and statically bound to processors

= Inter-processor synchronization

= Ensuring that precedence constraints of tasks on
different processors are always satisfied
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Task assignment

= Often done off-line
= NP-hard problem

= Assignment based on:
= Execution times
= Resource requirements
= Data dependencies
= Timing constraints
= Communication cost
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Task assignment - RMFF

= Rate-Monotonic First-Fit algorithm:
1. Sort tasks in increasing order according to their period

2. Assign tasks one by one

= (1)is assigned to [a]
= (i is assigned to [k]if the total utilization of (i) and the tasks
already assigned to [k| < Upys

= Example:
Assume zero communication overhead
@ Scheduling based on fixed priorities
A synchronization signal makes sure
@ that (3) is released as soon as (2) has
completed 01U
e
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Example
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Dynamic scheduling
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Changing synchronization protocol
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Multi-processing anomalies

= Assume a set of tasks optimally scheduled on a
multiprocessor system with:
= fixed number of processors
= fixed execution times (e;)
= precedence constraints
= Then
= changing the priority list
= increasing the number of processor
= reducing execution times
* weakening the precedence constraints

= May increase the scheduling length!

=
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Example of anomalies

Task 2 and 4 are sharing
a resource, i.e. mutually
exclusion

Y. /R

Reduce e, of task 1

oy
Consequences of anomalies
= Tasks may complete before their WCETs
= S0 most on-line scheduling algorithms are
subject to experience anomalies
= Simple but inefficient solution:
= Have tasks completing early idle
DTU
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Summary

= |ntroduction to classical uni-processor multi-task
scheduling

= |llustration of multi-processor scheduling

= Not covered:
= Priority inversion when having shared resources
= Context switching and cache overhead
= Overload conditions

= Low power scheduling,
= increasing idle periods on processors
= Voltage scaling

= Communication scheduling
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