
MPSoC Summer School July 11, 2002

Prof. Jan Madsen, DTU 1

Scheduling of Multi-Task
System Specifications

Prof. Jan Madsen

Informatics and Mathematical Modelling
Technical University of Denmark

Richard Petersens Plads, Building 321
DK2800 Lyngby, Denmark

http://www.imm.dtu.dk/~jan
jan@imm.dtu.dk

MPSoC 2002, Château de Pizay, France, Jan Madsen 2

Scheduling

1

3
4

2

a b c

a b c
os1 2

3

4

scheduling

MPSoC Summer School July 11, 2002

Prof. Jan Madsen, DTU 2

MPSoC 2002, Château de Pizay, France, Jan Madsen 3

About this lecture

Huge literature on scheduling theory
Aim is to give an overview of problems and
possible solutions to the multi-task scheduling
problem related to RTOS
Structure of lecture:

Some basic concepts and teminology
Uni-processor scheduling

Rate-monotonic scheduling
Earlies-deadlines-first scheduling

Multi-processor scheduling

MPSoC 2002, Château de Pizay, France, Jan Madsen 4

Architecture

Components
Processors

CPU, DSP, ASIC, ...
Communication

Bus, network, ...
Devices

sensor, actuator, display, ...

Architecture may be fixed
or (re-)configurable mem device

devicea b c
os

4

3

21

MPSoC Summer School July 11, 2002

Prof. Jan Madsen, DTU 3

MPSoC 2002, Château de Pizay, France, Jan Madsen 5

Application

Task
A module which can be envoked to perform a
particular function
A schedulable entity

Characterized by its:
Timing constraints
Precedence contraints
Exclusion constraints
Resource requirements

1

3
4

2

MPSoC 2002, Château de Pizay, France, Jan Madsen 6

Timing constraints

r1

r1 = time at which task becomes released (or active)

e1

e1 = worst case execution time (WCET)
d1 = deadline, task should complete before this!

d1s1

s1 = time at which task starts its execution

T1

T1 = period, minimum time between process releases

1

MPSoC Summer School July 11, 2002

Prof. Jan Madsen, DTU 4

MPSoC 2002, Château de Pizay, France, Jan Madsen 7

Task execution

Periodic
the period is the time between successive executions

Aperiodic
non-periodic task, typical an event handler

Sporadic
hard real-time aperiodic task
typical, a minimum interarrival constraint is imposed

MPSoC 2002, Château de Pizay, France, Jan Madsen 8

Scheduling

Allocation
Determine number and type of processors/resources

Assignment
Binding tasks to processors

Scheduling
Determine execution order

a
b

b
a

1
2 1

2

task view Architecture view

1 a

2 b

MPSoC Summer School July 11, 2002

Prof. Jan Madsen, DTU 5

MPSoC 2002, Château de Pizay, France, Jan Madsen 9

Scheduling principles

Off-line
A scheduler performing its job before the scheduled
system is put into operation

On-line
A scheduler performing its job at run-time, when the
system is running

Typically list-based
When a task is released (ready) it is placed in a list
Scheduler select which task from the list to execute next
Selection based on some criteria – scheduling policy

MPSoC 2002, Château de Pizay, France, Jan Madsen 10

Preemptive scheduling

Non-preemptive scheduling

Preemption vs. Non-preemption

1

2

1

2

MPSoC Summer School July 11, 2002

Prof. Jan Madsen, DTU 6

MPSoC 2002, Château de Pizay, France, Jan Madsen 11

Uni-processor scheduling

1

a

a
os
1

2
3

4

scheduling

mem

3
4

2

mem

MPSoC 2002, Château de Pizay, France, Jan Madsen 12

Rate-monotonic scheduling

Real-time scheduling with provable properties
[Liu and Layland 73]
Assumptions:

Each task is independent and given a unique priority
A task may be preempted by a higher-priority process
All tasks have a deadline equal to their period and a
fixed WCET
Context switching overhead is ignored

MPSoC Summer School July 11, 2002

Prof. Jan Madsen, DTU 7

MPSoC 2002, Château de Pizay, France, Jan Madsen 13

RMS

The critical instance for a task occurs when the
task and all higher-priority tasks are released
simultaneously
Must guarantee that all tasks meet their
deadlines, independent of order of releases

s1 e1r1 d1= T1

1 1

MPSoC 2002, Château de Pizay, France, Jan Madsen 14

RMS example

50

40

30

0 20 30 40 50 6010

eiTi

1030

1040

12501

2

3

1

3

2

MPSoC Summer School July 11, 2002

Prof. Jan Madsen, DTU 8

MPSoC 2002, Château de Pizay, France, Jan Madsen 15

Rate-monotonic priority assignment

Each task is given a unique priority where 1 is the
highest
Priority policy:

Task with shortest period gets highest priority
Fixed-priority scheme
Independent of ei’s

This priority assignment is optimal

No fixed priority scheme does it better!

MPSoC 2002, Château de Pizay, France, Jan Madsen 16

RMS example (cont.)

1

2

3

priorityeiTi

1030

1040

12501

2

3

MPSoC Summer School July 11, 2002

Prof. Jan Madsen, DTU 9

MPSoC 2002, Château de Pizay, France, Jan Madsen 17

CPU utilization under RMS

Given N independent tasks, utilization U

Least upper bound for utilization

∑
=

=
N

i i

i

T
eU

1

121 −< NNURM ()

%3.69)12((lim 1 =−
∞→

N

N
N

MPSoC 2002, Château de Pizay, France, Jan Madsen 18

RMS example (cont.)

U

3

2

1

priorityeiTi

1030

1040

1250

121 −= 33URM () = 0.78

0.24

0.25

0.33

0.82

1

2

3

URMU <

MPSoC Summer School July 11, 2002

Prof. Jan Madsen, DTU 10

MPSoC 2002, Château de Pizay, France, Jan Madsen 19

RMS example (cont.)

50

40

30

0 20 30 40 50 6010

1

3

2

MPSoC 2002, Château de Pizay, France, Jan Madsen 20

RMS

The utilization-based schedulability test is
sufficient but not necessary

If the test is passed it is schedulable
If the test is not passed, it may be schedulable

If all tasks meet their first deadline then they will
meet all future ones

MPSoC Summer School July 11, 2002

Prof. Jan Madsen, DTU 11

MPSoC 2002, Château de Pizay, France, Jan Madsen 21

Dynamic priority scheme
Changes priorities during execution based on
release times
Can achieve higher CPU utilization than RMS,
i.e. 100%
Priority policy:

task with closest deadline gets highest-priority

Earliest-Deadline-First Scheduling

MPSoC 2002, Château de Pizay, France, Jan Madsen 22

EDF example

0 5 10 15

1

3

2

eiTi

25

14

131

2

3

MPSoC Summer School July 11, 2002

Prof. Jan Madsen, DTU 12

MPSoC 2002, Château de Pizay, France, Jan Madsen 23

RMS example

50

40

30

0 20 30 40 50 6010

eiTi

1030

1040

12501

2

3

1

3

2

MPSoC 2002, Château de Pizay, France, Jan Madsen 24

RMS example scheduled using EDF

40

30

50

0 20 30 40 50 6010 80 90 100 11070

eiTi

1030p3

1040p2

1250p11

2

3

1

3

2

MPSoC Summer School July 11, 2002

Prof. Jan Madsen, DTU 13

MPSoC 2002, Château de Pizay, France, Jan Madsen 25

Comparing RMS and EDF

Higher CPU utilization with EDF
Easier to ensure that deadlines will be satisfied
with RMS
RMS easier to implement

MPSoC 2002, Château de Pizay, France, Jan Madsen 26

Multi-processor scheduling

1

a

b
os

3

4

scheduling

mem

3
4

2

mem

b

a
os

2

1

MPSoC Summer School July 11, 2002

Prof. Jan Madsen, DTU 14

MPSoC 2002, Château de Pizay, France, Jan Madsen 27

Multi-processor scheduling

Primary objective is to ensure that all timing
constraints are met
Serious difficulties in validating hard timing
constraints
Assumptions:

Each task has its own scheduler
The scheduler uses a uni-processor scheduling
algorithm
Schedulers on different processors need not use the
same algorithm

MPSoC 2002, Château de Pizay, France, Jan Madsen 28

Multi-processor scheduling

Task assignment
Most real-time systems are static, tasks are partitioned
and statically bound to processors

Inter-processor synchronization
Ensuring that precedence constraints of tasks on
different processors are always satisfied

MPSoC Summer School July 11, 2002

Prof. Jan Madsen, DTU 15

MPSoC 2002, Château de Pizay, France, Jan Madsen 29

Task assignment

Often done off-line
NP-hard problem
Assignment based on:

Execution times
Resource requirements
Data dependencies
Timing constraints
Communication cost
...

b
os

3

4

a
os

2

1

MPSoC 2002, Château de Pizay, France, Jan Madsen 30

Task assignment - RMFF

Rate-Monotonic First-Fit algorithm:
1. Sort tasks in increasing order according to their period
2. Assign tasks one by one

is assigned to
is assigned to if the total utilization of and the tasks

already assigned to < URM
Example:

1 a
i k i

k

1

3
4

2
Assume zero communication overhead

Scheduling based on fixed priorities

A synchronization signal makes sure
that is released as soon as has
completed

3 2

MPSoC Summer School July 11, 2002

Prof. Jan Madsen, DTU 16

MPSoC 2002, Château de Pizay, France, Jan Madsen 31

Example

1

3
4

2

4

0

0

ri eiTi

36

2+26

241

2

4

3

b
os

3

4

a
os

2

1

MPSoC 2002, Château de Pizay, France, Jan Madsen 32

Dynamic scheduling

0 4 6 8 102

0 4 6 8 102

14 1612

14 1612

1

3

2

4

a

b

RM RM

b
os

3

4

a
os

2

1

MPSoC Summer School July 11, 2002

Prof. Jan Madsen, DTU 17

MPSoC 2002, Château de Pizay, France, Jan Madsen 33

Changing synchronization protocol

0 4 6 8 102

0 4 6 8 102

14 1612

14 1612

RM EDF

1

3

2

4

a

b

b
os

3

4

a
os

2

1

MPSoC 2002, Château de Pizay, France, Jan Madsen 34

Multi-processing anomalies

Assume a set of tasks optimally scheduled on a
multiprocessor system with:

fixed number of processors
fixed execution times (ei)
precedence constraints

Then
changing the priority list
increasing the number of processor
reducing execution times
weakening the precedence constraints

May increase the scheduling length!

MPSoC Summer School July 11, 2002

Prof. Jan Madsen, DTU 18

MPSoC 2002, Château de Pizay, France, Jan Madsen 35

Example of anomalies

1

3

2

4 5

1

3

2

4 5

Reduce e1 of task 1

a

b

a

b

Task 2 and 4 are sharing
a resource, i.e. mutually
exclusion

MPSoC 2002, Château de Pizay, France, Jan Madsen 36

Consequences of anomalies

Tasks may complete before their WCETs
So most on-line scheduling algorithms are
subject to experience anomalies
Simple but inefficient solution:

Have tasks completing early idle

MPSoC Summer School July 11, 2002

Prof. Jan Madsen, DTU 19

MPSoC 2002, Château de Pizay, France, Jan Madsen 37

Summary

Introduction to classical uni-processor multi-task
scheduling
Illustration of multi-processor scheduling
Not covered:

Priority inversion when having shared resources
Context switching and cache overhead
Overload conditions
Low power scheduling,

increasing idle periods on processors
Voltage scaling

Communication scheduling

