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About this lecture

Huge literature on scheduling theory
Aim is to give an overview of problems and 
possible solutions to the multi-task scheduling 
problem related to RTOS
Structure of lecture:

Some basic concepts and teminology
Uni-processor scheduling

Rate-monotonic scheduling
Earlies-deadlines-first scheduling

Multi-processor scheduling
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Architecture

Components
Processors

CPU, DSP, ASIC, ...
Communication

Bus, network, ...
Devices

sensor, actuator, display, ...

Architecture may be fixed 
or (re-)configurable mem device

devicea b c
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Application

Task 
A module which can be envoked to perform a 
particular function
A schedulable entity

Characterized by its:
Timing constraints
Precedence contraints
Exclusion constraints
Resource requirements
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Timing constraints

r1

r1 = time at which task becomes released (or active)

e1

e1 = worst case execution time (WCET)
d1 = deadline, task should complete before this!

d1s1

s1 = time at which task starts its execution

T1

T1 = period, minimum time between process releases

1
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Task execution

Periodic
the period is the time between successive  executions

Aperiodic
non-periodic task, typical an event handler

Sporadic 
hard real-time aperiodic task 
typical, a minimum interarrival constraint is imposed
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Scheduling 

Allocation
Determine number and type of processors/resources

Assignment
Binding tasks to processors

Scheduling
Determine execution order 
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Scheduling principles

Off-line
A scheduler performing its job before the scheduled 
system is put into operation

On-line
A scheduler performing its job at run-time, when the 
system is running

Typically list-based
When a task is released (ready) it is placed in a list
Scheduler select which task from the list to execute next
Selection based on some criteria – scheduling policy
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Preemptive scheduling

Non-preemptive scheduling

Preemption vs. Non-preemption

1

2

1

2



MPSoC Summer School July 11, 2002

Prof. Jan Madsen, DTU 6

MPSoC 2002, Château de Pizay, France, Jan Madsen 11

Uni-processor scheduling 
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Rate-monotonic scheduling

Real-time scheduling with provable properties 
[Liu and Layland 73]
Assumptions:

Each task is independent and given a unique priority
A task may be preempted by a higher-priority process
All tasks have a deadline equal to their period and a 
fixed WCET
Context switching overhead is ignored
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RMS

The critical instance for a task occurs when the 
task and all higher-priority tasks are released 
simultaneously
Must guarantee that all tasks meet their 
deadlines, independent of order of releases

s1 e1r1 d1= T1

1 1
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RMS example
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Rate-monotonic priority assignment

Each task is given a unique priority where 1 is the 
highest
Priority policy: 

Task with shortest period gets highest priority
Fixed-priority scheme
Independent of ei’s

This priority assignment is optimal

No fixed priority scheme does it better!
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RMS example (cont.)
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CPU utilization under RMS

Given N independent tasks, utilization U

Least upper bound for utilization
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RMS example (cont.)
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RMS example (cont.)
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RMS

The utilization-based schedulability test is 
sufficient but not necessary

If the test is passed it is schedulable
If the test is not passed, it may be schedulable

If all tasks meet their first deadline then they will 
meet all future ones
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Dynamic priority scheme
Changes priorities during execution based on 
release times
Can achieve higher CPU utilization than RMS, 
i.e. 100%
Priority policy:

task with closest deadline gets highest-priority

Earliest-Deadline-First Scheduling
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EDF example
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RMS example
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RMS example scheduled using EDF
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Comparing RMS and EDF

Higher CPU utilization with EDF
Easier to ensure that deadlines will be satisfied 
with RMS
RMS easier to implement
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Multi-processor scheduling 
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Multi-processor scheduling

Primary objective is to ensure that all timing 
constraints are met
Serious difficulties in validating hard timing 
constraints
Assumptions:

Each task has its own scheduler
The scheduler uses a uni-processor scheduling 
algorithm
Schedulers on different processors need not use the 
same algorithm
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Multi-processor scheduling

Task assignment
Most real-time systems are static, tasks are partitioned 
and statically bound to processors

Inter-processor synchronization
Ensuring that precedence constraints of tasks on 
different processors are always satisfied
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Task assignment

Often done off-line
NP-hard problem
Assignment based on:

Execution times
Resource requirements
Data dependencies
Timing constraints
Communication cost
...
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Task assignment - RMFF

Rate-Monotonic First-Fit algorithm:
1. Sort tasks in increasing order according to their period
2. Assign tasks one by one

is assigned to 
is assigned to      if the total utilization of       and the tasks 

already assigned to       < URM
Example:

1 a
i k i

k
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Assume zero communication overhead

Scheduling based on fixed priorities

A synchronization signal makes sure 
that is released as soon as has
completed

3 2
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Example 

1

3
4

2

4

0

0

ri eiTi

36

2+26

241

2

4

3

b
os

3

4

a
os

2

1

MPSoC 2002, Château de Pizay, France, Jan Madsen 32

Dynamic scheduling
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Changing synchronization protocol
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Multi-processing anomalies

Assume a set of tasks optimally scheduled on a 
multiprocessor system with:

fixed number of processors
fixed execution times (ei)
precedence constraints

Then
changing the priority list
increasing the number of processor
reducing execution times
weakening the precedence constraints

May increase the scheduling length!
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Example of anomalies
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Task 2 and 4 are sharing 
a resource, i.e. mutually 
exclusion
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Consequences of anomalies

Tasks may complete before their WCETs
So most on-line scheduling algorithms are 
subject to experience anomalies
Simple but inefficient solution:

Have tasks completing early idle
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Summary

Introduction to classical uni-processor multi-task 
scheduling
Illustration of multi-processor scheduling
Not covered:

Priority inversion when having shared resources
Context switching and cache overhead
Overload conditions
Low power scheduling, 

increasing idle periods on processors
Voltage scaling

Communication scheduling


