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Outline

• What Can PICO Do for an SOC Designer?
• The PICO System Design Hierarchy
• From Sequential to Parallel Loop Nest
• Parallel Loop Nest to Processor Design
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PICO overview
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Using PICO

• User provides application, test data, and 
design space limits

• User indicates hot loop nests
• PICO creates Pareto set of ASIP designs.
• Each design has a customized VLIW with

zero or more loop nests realized in HW
• User selects appropriate design for SOC 

based on area, power, performance tradeoff
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PICO’s ASIP Architecture
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Hierarchical Design Frameworks
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An Automated Design Template
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Good Systems from Good Subsystems
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design space exploration

Compile
Estimate Cycle Count 

Synthesize
Estimate Area 

Design Space
Exploration 

2.5 million systems specified

3,145 systems  
considered

77 Pareto  
systems

R
un

s 
pe

r s
ec

on
d

Area



R. Schreiber – MPsoc Workshop, July 2002

PICO GUI
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Limiting the Design Space
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Exploration
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Pareto Optimal Machines: VLIW-only
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Pareto Optimal Machines: All systems

VLIW 
Machines

Hybrid 
Machines
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Systolic Design: Exploration

1 Processor, 
II=8

1 Processor, II=2

1 Processor, II=1

2 Processors, II=1
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Synthesis of a Non-Programmable,
Application-Specific Accelerator:

From Sequential Loop Nest to 
Parallel Loop Nest
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Input Language

•• A perfect loop nest A systolic array
• A sequence of nests A pipeline of arrays
• Constant loop bounds
• Dependence analysis must be feasible:

• No aliasing through pointers
• Language extensions

• #pragma bitsize x 12
• #internal coeff
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From C to VHDL

Sequential C loop nest

Registers, interconnect, FUs, memory

Sequential loop nest, tiled and register promoted

Iteration scheduled, parallel loop nest

Function units and software pipelined loop nest

Verilog/VHDL Design
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From C to VHDL

C program

Compiler back end
(Elcor)

Compiler front end
(SUIF+Omega)

HDL Synthesis

Verilog/VHDL

Tiles, schedules, maps, transforms
loops, eliminates loads/stores

Optimizes, analyzes bitwidth, allocates
function units, software pipelining 

Allocates registers and interconnect.
Builds VHDL description of processor.
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What does it take to make this 
efficient?
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The Memory Wall

CPU Memory
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Cache and Local Memory

CPU

Memory

DSP/NPA Local
Memory

Cache
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Goal of Code Transformation
for each TILE
{
for (t = 0; t < Tfinal; t++)
{
forall processors p
{

X[t][p] = . . .
Y[t-1][p+1] . . .

}
}

}
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Tiling the Iteration Space

Volume/Surface = O(radius)

Computation/Footprint = Ω(radius)

Computation/Footprint = CPU/Memory

computation

data
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Load/Store Elimination

• For affine array references, intermediate
results in registers

• For affine, read-only array references, data 
routed through registers; no value loaded
more than once.
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Tile Shapes

Big tiles More local memory

Small tiles less reuse of data, more global
memory bandwidth

Optimal tile smallest tile that does not     
oversubscribe memory bandwidth
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Estimating the Footprint

Affine array reference
X[i+j][2*j-3*k]

How many integer points in 
an affine image of a 

rectangular iteration space?
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Example: the Affine Image 
of an Iteration Space
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Corrected Estimates

•Published bounds on the size of the image of a Z-
polytope are wrong
•Our corrections:

- footprint = iteration space for 1-1 mappings
- 1-1 if no integer null vector in the iteration space
- corrected bounds from finding number of iterations

that differ by a null vector
- within 20 percent in practice
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Reindexing to Reduce Local Memory
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Finding the Parallel Iteration 
Schedule

Iteration
Scheduler

Linear Timing 
Function

Annotated Dataflow
Graph

number of procs

• Processors  a mesh of processors is given
• Initiation Interval (II)  every processor starts an iteration periodically

with period equal to II (hardware pipelining)
• Mapping   clusters of iterations are mapped to each processor
• Schedule   one iteration per processor every II cycles
• Honor data dependence constraints
• Find the schedule via efficient direct search method

initiation interval
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Hardware/Software Pipelining
for (i=0; i < 100; i++) a[i] += b[i]*c[i]

ld b ld c mpy add

ld b ld c mpy add

ld b ld c mpy

i=0

i=1

i=2

time

II

Lower Bounds on II    (RecMII, ResMII)

str

str
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The Mapping of Iterations to 
Processors

for (i = 0; i < 8; i++)for (i = 0; i < 8; i++)
for (j = 0; j < 4; j++)for (j = 0; j < 4; j++)
{   {   

y[i] += w[j] * x[iy[i] += w[j] * x[i--j];j];
}}

jj

ii

p=1

p=0 Iteration Space: (8,4)
Mapping: proc(i,j) = j / 2

Cluster shape = (2)
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A Tight Schedule: (i,j) --> 2i+3j
for (i = 0; i < 8; i++)for (i = 0; i < 8; i++)

for (j = 0; j < 4; j++)for (j = 0; j < 4; j++)
{   {   

y[i] += w[j] * x[iy[i] += w[j] * x[i--j];j];
}}

14121086420

171513119753

20181614121086

232119171513119
jj

ii

p=1

p=0 
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Tight Schedules – Prior Work

Darte/Delosme,  Chen/Megson.  
• GIVEN:  Iteration space, projection direction, 

linear schedule 
• DETERMINE:  The allowed cluster shapes
• Tail Wags Dog!
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Constructing the Schedule

Generate Generate 
(lots of) Tight (lots of) Tight 

SchedulesSchedules

Dependence Dependence 
AnalysisAnalysis

Bounding Bounding 
RegionRegion

Test for Test for 
CorrectnessCorrectness

Estimate Estimate 
Hardware CostHardware Cost

looploop
nestnest

arrayarray
spec.spec.

SelectSelect
ScheduleSchedule
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Processor Synthesis

Processor
Synthesis

loop

II
Processor

• Optimize the loop body
• Analyze bitwidth of all values
• Allocate the function units
• Map operations to function units
• Schedule operations
• Allocate registers and memory
• Interconnect communicating elements

Parallel, custom, designed to spec: EFFICIENT!
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Bitwidth analysis - basic idea

c ba

Input information limits the amount 
information that can be produced

Information required by consumers limits 
the amount that must be produced

Opcode semantics relate 
input and output information
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Optimal FU allocation
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MILP:  minimize cost subject to 
sufficient capacity
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Allocation and Op Scheduling

Required II

Given: Inner loop and II Find: Cheapest processor
that achieves II on the loop

achieved 
<= 

required?

Modulo
Operation
Schedule

Count operations

Reallocate

Preallocate

LOOP

Achieved II

N Y
f
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Conclusions

• Accurate static analysis of memory 
bandwidth – optimal tiling

• Linear iteration scheduling: solved problem
• Efficient datapath synthesis – a hard 

problem, good heuristics
• Automatic NPA synthesis is practical
• Automatic synthesis of full embedded 

systems is feasible, too
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