
R. Schreiber – MPsoc Workshop, July 2002

PICO: ASIC Synthesis from C

Rob Schreiber Shail Aditya Bob Rau
Vinod Kathail Scott Mahlke

Darren Cronquist Mukund Sivaraman

HP Labs, Palo Alto

R. Schreiber – MPsoc Workshop, July 2002

Outline

• What Can PICO Do for an SOC Designer?
• The PICO System Design Hierarchy
• From Sequential to Parallel Loop Nest
• Parallel Loop Nest to Processor Design

R. Schreiber – MPsoc Workshop, July 2002

PICO overview

PICO

Architecture
Synthesis

rogram InP

Compiler

C O hip
 ode ut

Logic Synthesis,
Physical Design

CAD Tools

VHDL for
Processors

Program In --> IP Out

R. Schreiber – MPsoc Workshop, July 2002

Using PICO

• User provides application, test data, and
design space limits

• User indicates hot loop nests
• PICO creates Pareto set of ASIP designs.
• Each design has a customized VLIW with

zero or more loop nests realized in HW
• User selects appropriate design for SOC

based on area, power, performance tradeoff

R. Schreiber – MPsoc Workshop, July 2002

PICO’s ASIP Architecture

Systolic Array

control

Global
Memory

Local Memory

G.P. Processor

Cache

R. Schreiber – MPsoc Workshop, July 2002

Hierarchical Design Frameworks

R. Schreiber – MPsoc Workshop, July 2002

An Automated Design Template

Parameter
Ranges

SpaceWalker

Constructor

Evaluator

Pareto Filter

Function
Specification

R. Schreiber – MPsoc Workshop, July 2002

Good Systems from Good Subsystems

VLIW
Pareto NPA ParetoCache

Pareto

System Constructor

System Evaluator

System Pareto Filter

R. Schreiber – MPsoc Workshop, July 2002

design space exploration

Compile
Estimate Cycle Count

Synthesize
Estimate Area

Design Space
Exploration

2.5 million systems specified

3,145 systems
considered

77 Pareto
systems

R
un

s
pe

r s
ec

on
d

Area

R. Schreiber – MPsoc Workshop, July 2002

PICO GUI

R. Schreiber – MPsoc Workshop, July 2002

Limiting the Design Space

R. Schreiber – MPsoc Workshop, July 2002

Exploration

R. Schreiber – MPsoc Workshop, July 2002

Pareto Optimal Machines: VLIW-only

R. Schreiber – MPsoc Workshop, July 2002

Pareto Optimal Machines: All systems

VLIW
Machines

Hybrid
Machines

R. Schreiber – MPsoc Workshop, July 2002

Systolic Design: Exploration

1 Processor,
II=8

1 Processor, II=2

1 Processor, II=1

2 Processors, II=1

R. Schreiber – MPsoc Workshop, July 2002

Synthesis of a Non-Programmable,
Application-Specific Accelerator:

From Sequential Loop Nest to
Parallel Loop Nest

R. Schreiber – MPsoc Workshop, July 2002

Input Language

•• A perfect loop nest A systolic array
• A sequence of nests A pipeline of arrays
• Constant loop bounds
• Dependence analysis must be feasible:

• No aliasing through pointers
• Language extensions

• #pragma bitsize x 12
• #internal coeff

R. Schreiber – MPsoc Workshop, July 2002

From C to VHDL

Sequential C loop nest

Registers, interconnect, FUs, memory

Sequential loop nest, tiled and register promoted

Iteration scheduled, parallel loop nest

Function units and software pipelined loop nest

Verilog/VHDL Design

R. Schreiber – MPsoc Workshop, July 2002

From C to VHDL

C program

Compiler back end
(Elcor)

Compiler front end
(SUIF+Omega)

HDL Synthesis

Verilog/VHDL

Tiles, schedules, maps, transforms
loops, eliminates loads/stores

Optimizes, analyzes bitwidth, allocates
function units, software pipelining

Allocates registers and interconnect.
Builds VHDL description of processor.

R. Schreiber – MPsoc Workshop, July 2002

What does it take to make this
efficient?

R. Schreiber – MPsoc Workshop, July 2002

The Memory Wall

CPU Memory

R. Schreiber – MPsoc Workshop, July 2002

Cache and Local Memory

CPU

Memory

DSP/NPA Local
Memory

Cache

R. Schreiber – MPsoc Workshop, July 2002

Goal of Code Transformation
for each TILE
{
for (t = 0; t < Tfinal; t++)
{
forall processors p
{

X[t][p] = . . .
Y[t-1][p+1] . . .

}
}

}

R. Schreiber – MPsoc Workshop, July 2002

Tiling the Iteration Space

Volume/Surface = O(radius)

Computation/Footprint = Ω(radius)

Computation/Footprint = CPU/Memory

computation

data

R. Schreiber – MPsoc Workshop, July 2002

Load/Store Elimination

• For affine array references, intermediate
results in registers

• For affine, read-only array references, data
routed through registers; no value loaded
more than once.

R. Schreiber – MPsoc Workshop, July 2002

Tile Shapes

Big tiles More local memory

Small tiles less reuse of data, more global
memory bandwidth

Optimal tile smallest tile that does not
oversubscribe memory bandwidth

R. Schreiber – MPsoc Workshop, July 2002

Estimating the Footprint

Affine array reference
X[i+j][2*j-3*k]

How many integer points in
an affine image of a

rectangular iteration space?

R. Schreiber – MPsoc Workshop, July 2002

Example: the Affine Image
of an Iteration Space

R. Schreiber – MPsoc Workshop, July 2002

Corrected Estimates

•Published bounds on the size of the image of a Z-
polytope are wrong
•Our corrections:

- footprint = iteration space for 1-1 mappings
- 1-1 if no integer null vector in the iteration space
- corrected bounds from finding number of iterations

that differ by a null vector
- within 20 percent in practice

R. Schreiber – MPsoc Workshop, July 2002

Reindexing to Reduce Local Memory

x x x x
x x x x

x x x x
x x x x

x x x x
x x x x

x x x x
x x x x xxxx

xxxx
xxxx
xxxx

R. Schreiber – MPsoc Workshop, July 2002

Finding the Parallel Iteration
Schedule

Iteration
Scheduler

Linear Timing
Function

Annotated Dataflow
Graph

number of procs

• Processors a mesh of processors is given
• Initiation Interval (II) every processor starts an iteration periodically

with period equal to II (hardware pipelining)
• Mapping clusters of iterations are mapped to each processor
• Schedule one iteration per processor every II cycles
• Honor data dependence constraints
• Find the schedule via efficient direct search method

initiation interval

R. Schreiber – MPsoc Workshop, July 2002

Hardware/Software Pipelining
for (i=0; i < 100; i++) a[i] += b[i]*c[i]

ld b ld c mpy add

ld b ld c mpy add

ld b ld c mpy

i=0

i=1

i=2

time

II

Lower Bounds on II (RecMII, ResMII)

str

str

R. Schreiber – MPsoc Workshop, July 2002

The Mapping of Iterations to
Processors

for (i = 0; i < 8; i++)for (i = 0; i < 8; i++)
for (j = 0; j < 4; j++)for (j = 0; j < 4; j++)
{ {

y[i] += w[j] * x[iy[i] += w[j] * x[i--j];j];
}}

jj

ii

p=1

p=0 Iteration Space: (8,4)
Mapping: proc(i,j) = j / 2

Cluster shape = (2)

R. Schreiber – MPsoc Workshop, July 2002

A Tight Schedule: (i,j) --> 2i+3j
for (i = 0; i < 8; i++)for (i = 0; i < 8; i++)

for (j = 0; j < 4; j++)for (j = 0; j < 4; j++)
{ {

y[i] += w[j] * x[iy[i] += w[j] * x[i--j];j];
}}

14121086420

171513119753

20181614121086

232119171513119
jj

ii

p=1

p=0

R. Schreiber – MPsoc Workshop, July 2002

Tight Schedules – Prior Work

Darte/Delosme, Chen/Megson.
• GIVEN: Iteration space, projection direction,

linear schedule
• DETERMINE: The allowed cluster shapes
• Tail Wags Dog!

R. Schreiber – MPsoc Workshop, July 2002

Constructing the Schedule

Generate Generate
(lots of) Tight (lots of) Tight

SchedulesSchedules

Dependence Dependence
AnalysisAnalysis

Bounding Bounding
RegionRegion

Test for Test for
CorrectnessCorrectness

Estimate Estimate
Hardware CostHardware Cost

looploop
nestnest

arrayarray
spec.spec.

SelectSelect
ScheduleSchedule

R. Schreiber – MPsoc Workshop, July 2002

Processor Synthesis

Processor
Synthesis

loop

II
Processor

• Optimize the loop body
• Analyze bitwidth of all values
• Allocate the function units
• Map operations to function units
• Schedule operations
• Allocate registers and memory
• Interconnect communicating elements

Parallel, custom, designed to spec: EFFICIENT!

R. Schreiber – MPsoc Workshop, July 2002

Bitwidth analysis - basic idea

c ba

Input information limits the amount
information that can be produced

Information required by consumers limits
the amount that must be produced

Opcode semantics relate
input and output information

R. Schreiber – MPsoc Workshop, July 2002

Optimal FU allocation

+

-

+/-

FU
count cost type

1

0

1

+

-

Operation
type count

3

1

2

1
1

10

10

13

MILP: minimize cost subject to
sufficient capacity

R. Schreiber – MPsoc Workshop, July 2002

Allocation and Op Scheduling

Required II

Given: Inner loop and II Find: Cheapest processor
that achieves II on the loop

achieved
<=

required?

Modulo
Operation
Schedule

Count operations

Reallocate

Preallocate

LOOP

Achieved II

N Y
f

f.u. library

R. Schreiber – MPsoc Workshop, July 2002

Conclusions

• Accurate static analysis of memory
bandwidth – optimal tiling

• Linear iteration scheduling: solved problem
• Efficient datapath synthesis – a hard

problem, good heuristics
• Automatic NPA synthesis is practical
• Automatic synthesis of full embedded

systems is feasible, too

Related pubications :

Robert Schreiber, Shail Aditya, Scott Mahlke, Vinod Kathail, B. Ramakrishna Rau, Darren
Cronquist, and Mukund Sivaraman.
PICO-NPA: High-level synthesis of nonprogrammable hardware accelerators.
In Journal of VLSI Signal Processing 31: 127-142 (2002).

Shail Aditya, B. Ramakrishna Rau, and Vinod Kathail.
Automatic architecture synthesis of VLIW and EPIC processors.
In Proceedings of the 12th International Symposium on System Synthesis, San Jose,
California, pp. 107--113, November 1999.

Alain Darte, Robert Schreiber, B. Ramakrishna Rau, and Frederic Vivien.
Constructing and exploiting linear schedules with prescribed parallelism.
ACM Transactions on Design Automation for Electronic Systems, 7(1), (2002)

Kyle Gallivan, William Jalby, and Dennis Gannon.
On the problem of optimizing data transfers for complex memory systems.
In Proceedings of the 1988 ACM International Conference on Supercomputing, pp. 238--253,
1988.

Scott Mahlke, Rajiv Ravindran, Michael Schlansker, Robert Schreiber, and Timothy
Sherwood.
Bitwidth cognizant architecture synthesis of custom hardware accelerators.
IEEE Transactions on Computer-Aided Design of Circuits and Systems, 20(10):1-17, 2001.

William Pugh.
The Omega test: a fast and practical integer programming algorithm for dependence analysis.
Communications of the ACM, 35(8):102--114, 1992.

Patrice Quinton and Yves Robert.
Systolic Algorithms and Architectures.
Prentice Hall International (UK) Ltd., Hemel Hempstead, England, 1991.

B. Ramakrishna Rau.
Iterative modulo scheduling.
International Journal of Parallel Processing, 24:3--64, 1996.

B. Ramakrishna Rau, Vinod Kathail, and Shail Aditya.
Machine-description driven compilers for EPIC and VLIW processors.
Design Automation for Embedded Systems, 4:71--118, 1999.

