PICO: ASIC Synthesis from C

Rob Schreiber Shail Aditya Bob Rau Vinod Kathail Scott Mahlke Darren Cronquist Mukund Sivaraman

HP Labs, Palo Alto

Colore the ADD and Manual and Table 2002

Outline

- What Can PICO Do for an SOC Designer?
- The PICO System Design Hierarchy
- From Sequential to Parallel Loop Nest
- Parallel Loop Nest to Processor Design

PICO overview

Colonailean AADaaa Waalaalaan Tulu 2002

Using PICO

- User provides application, test data, and design space limits
- User indicates hot loop nests
- PICO creates Pareto set of ASIP designs.
- Each design has a customized VLIW with zero or more loop nests realized in HW
- User selects appropriate design for SOC based on area, power, performance tradeoff

PICO's ASIP Architecture

Colore the AAD and M/ solved and Table 2002

Hierarchical Design Frameworks

Colora il an ADA AVA alasha Tala 2002

An Automated Design Template

Parameter Ranges Function Specification

SpaceWalker

Constructor

Evaluator

Pareto Filter

Good Systems from Good Subsystems

System Constructor

System Evaluator

System Pareto Filter

Colonailean AADaaa Maalaalean Tulu 2002

design space exploration

PICO GUI

X PIC	O: A Co	npiler-Guio	led Process	or Design Too	ol in the second se			_ 🗆 ×						
<u>F</u> ile	e <u>O</u> ptions <u>D</u> esign													
	PICO: A Compiler-Guided Processor Design Tool													
	GUI adapted from TU Delft's MOVE system													
Δ														
	Applic	Application project file: /car/scratchy/demo2000/pico/apps/ipeg99												
	100													
	VLSI i /ca	VLSI model file: /car/scratchy/demo2000/pico/Models/model25												
	Design task:													
	All													
	Pareto All	Pareto solutions: All Systems												
		A noo zw. Dowformu ou oo												
	10000	Area vs. Performance												
		10.0		ALL WALL			1001							
		10.0												
	MHz	-												
	200	5.0 —												
	0													
	ns/se	0.0-												
	t (m													
	ndub	-5.0												
	nort													
		-10.0	· · ·		1									
			0.0	-5.0	Area (mm^2)	5.0	10.0							
$\overline{\nabla}$	-	Area / Time Area / Throughput												
				1										
			Quit			Hel	p							

Limiting the Design Space

🕱 EPIC-Only + Hybrid De	sign Space Explorer: '/car/s	cratchy/demo2000/.chipo	tle/data/jpeg99/transient/	explore_range'			_ 🗆 ×						
<u>F</u> ile <u>O</u> ptions							<u>H</u> elp						
EPIC-Only + Hybrid Design Space Explorer													
Predication:	Speculation:	EPIC Type:	Systolic:	Level 1 data cache parameters									
v general	 general restricted 	heterogeneous	without	Cache sets:	low: 128	high: 128	sten						
 both 	🕹 both	÷	🔶 both	Accodiativity		high: 2	cton						
Functional Units				Associativity.		ingn. ∠ 💌	step						
Integer:	low: 1	high: 8	step: 1	Line size:	10W: 16 🛒	nign: 32 🚽	step						
Float:	low:	high:	sten: 1										
Mamanu		high:	step. 1										
метогу:	iow:	nign: 4 🔽	step:	Level 1 instruction c	ache parameters		(
Branch:	low: 1	high: 1 🚽	step: 1	Cache sets:	low: 128 🚔	high: 128 🚔	step						
Register Files				Associativity:	low: 2	high: 2	step						
Integer:	low: 32	high: 128 🚔	step: 32	Line size:	low: 32	high: 128	step						
Float:	low: 32	high: 32 🚔	step: 16										
Predicate:	low: 32 🚔	high: 32 🗘	step: 16 🚔										
Branch:	low: 16 🚔	high: 16 🚔	Level 2 unified cache	e parameters									
Svetolic Array				Cache sets:	low: 256 🚔	high: 256 🗘	ster						
Systone Array				Associativity:	low: 2	high: 3 🚔	ster						
Systolic Process	ors: low: 1	<pre> high: 2</pre>	Line size:	low: 64 븆	high: 128 🗘	ster							
II:	low: 1	🗘 high: 8 🌻	step: 1										
Memory Ports:	low: 1	🛨 high: 1 韋	step: 1										
Search mode:	 Show final Pareto 	♦ Show intermediat	e Paretos	,									
	Explore		Quit			Help							

Exploration

150.0

200.0

Pareto Optimal Machines: VLIW-only

Pareto Optimal Machines: All systems

Systolic Design: Exploration

Synthesis of a Non-Programmable, Application-Specific Accelerator:

From Sequential Loop Nest to Parallel Loop Nest

Colore the AD and M/ solution Table 2002

Input Language

- A perfect loop nest \rightarrow A systolic array
- A sequence of nests \rightarrow A pipeline of arrays
- Constant loop bounds
- Dependence analysis must be feasible:
 - No aliasing through pointers
- Language extensions
 - #pragma bitsize x 12
 - #internal coeff

From C to VHDL Sequential C loop nest Sequential loop nest, tiled and register promoted Iteration scheduled, parallel loop nest Function units and software pipelined loop nest Registers, interconnect, FUs, memory Verilog/VHDL Design

Colore the ADD and Manalash Tole 2002

From C to VHDL

Tiles, schedules, maps, transforms loops, eliminates loads/stores

Optimizes, analyzes bitwidth, allocates function units, software pipelining

Allocates registers and interconnect. Builds VHDL description of processor.

Colora itan ADara Maralada Tala 2002

What does it take to make this efficient?

Colore the AAD and MAAndraham Table 2002

The Memory Wall

Memory

CPU

Colonailean ADass Manladaan Tu

Cache and Local Memory


```
Goal of Code Transformation
for each TILE
  for (t = 0; t < Tfinal; t++)
    forall processors p
       X[t][p] = . . .
          Y[t-1][p+1] . . .
```

Tiling the Iteration Space

Volume/Surface = O(radius)

```
Computation/Footprint = \Omega(radius)
```

```
Computation/Footprint = CPU/Memory
```

Load/Store Elimination

- For affine array references, intermediate results in registers
- For affine, read-only array references, data routed through registers; no value loaded more than once.

Tile Shapes

Big tiles \rightarrow More local memory

Small tiles \rightarrow less reuse of data, more global memory bandwidth

Optimal tile → smallest tile that does not oversubscribe memory bandwidth

Estimating the Footprint

Affine array reference X[i+j][2*j-3*k]

How many integer points in an affine image of a rectangular iteration space?

Example: the Affine Image of an Iteration Space

Corrected Estimates

Published bounds on the size of the image of a Z-polytope are <u>wrong</u>
Our corrections:

- footprint = iteration space for 1-1 mappings
- 1-1 if no integer null vector in the iteration space
- corrected bounds from finding number of iterations that differ by a null vector
- within 20 percent in practice

Reindexing to Reduce Local Memory

Finding the Parallel Iteration Schedule

- Processors a mesh of processors is given
- *Initiation Interval (II)* every processor starts an iteration periodically with period equal to II (*hardware* pipelining)
- *Mapping* clusters of iterations are mapped to each processor
- Schedule one iteration per processor every II cycles
- *Honor* data dependence constraints
- Find the schedule via efficient direct search method

Calmainan ADaga Wantahan Tulu 2002

Hardware/Software Pipelining

for (i=0; i < 100; i++) a[i] += b[i]*c[i]</pre>

time

Lower Bounds on II (RecMII, ResMII)

Colora il an AADaa Maladaan Tala 2002

A Tight Schedule: (i,j) --> 2i+3j

Tight Schedules – Prior Work

Darte/Delosme, Chen/Megson.

- *GIVEN*: Iteration space, projection direction, linear schedule
- *DETERMINE*: The allowed cluster shapes
- Tail Wags Dog!

Constructing the Schedule

Colore the AAD and MA colored and Table 2002

Processor Synthesis

- Optimize the loop body
- Analyze bitwidth of all values
- Allocate the function units
- Map operations to function units
- Schedule operations
- Allocate registers and memory
- *Interconnect* communicating elements

Parallel, custom, designed to spec: EFFICIENT!

Bitwidth analysis - basic idea

Input information limits the amount information that can be produced

Information required by consumers limits the amount that must be produced

Colona il an AADaa M/anladaan Tulu 2002

Optimal FU allocation

MILP: minimize cost subject to sufficient capacity

Colora il an ADasa Manlada en Tula 2002

Allocation and Op Scheduling

Given: Inner loop and II

Find: Cheapest processor that achieves II on the loop

Colore the AAD as AA/ solarly Table 2002

Conclusions

- Accurate static analysis of memory bandwidth optimal tiling
- Linear iteration scheduling: solved problem
- Efficient datapath synthesis a hard problem, good heuristics
- Automatic NPA synthesis is practical
- Automatic synthesis of full embedded systems is feasible, too

Related pubications :

Robert Schreiber, Shail Aditya, Scott Mahlke, Vinod Kathail, B. Ramakrishna Rau, Darren Cronquist, and Mukund Sivaraman. PICO-NPA: High-level synthesis of nonprogrammable hardware accelerators. In Journal of VLSI Signal Processing 31: 127-142 (2002).

Shail Aditya, B. Ramakrishna Rau, and Vinod Kathail. Automatic architecture synthesis of VLIW and EPIC processors. In Proceedings of the 12th International Symposium on System Synthesis, San Jose, California, pp. 107--113, November 1999.

Alain Darte, Robert Schreiber, B. Ramakrishna Rau, and Frederic Vivien. Constructing and exploiting linear schedules with prescribed parallelism. ACM Transactions on Design Automation for Electronic Systems, 7(1), (2002)

Kyle Gallivan, William Jalby, and Dennis Gannon. On the problem of optimizing data transfers for complex memory systems. In Proceedings of the 1988 ACM International Conference on Supercomputing, pp. 238--253, 1988.

Scott Mahlke, Rajiv Ravindran, Michael Schlansker, Robert Schreiber, and Timothy Sherwood.

Bitwidth cognizant architecture synthesis of custom hardware accelerators. IEEE Transactions on Computer-Aided Design of Circuits and Systems, 20(10):1-17, 2001.

William Pugh.

The Omega test: a fast and practical integer programming algorithm for dependence analysis. Communications of the ACM, 35(8):102--114, 1992.

Patrice Quinton and Yves Robert. Systolic Algorithms and Architectures. Prentice Hall International (UK) Ltd., Hemel Hempstead, England, 1991.

B. Ramakrishna Rau. Iterative modulo scheduling. International Journal of Parallel Processing, 24:3--64, 1996.

B. Ramakrishna Rau, Vinod Kathail, and Shail Aditya. Machine-description driven compilers for EPIC and VLIW processors. Design Automation for Embedded Systems, 4:71--118, 1999.