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Outline
System-on-chip design flow

–Functional and architectural modeling
–Mapping
–Performance simulation
–Communication refinement
– Implementation

Case study: wireless LAN architectural exploration
– functional model
–on-chip communication architectural model
–design space exploration



MPSOC’02 Summer School, France, July 2002 - 3Luciano Lavagno ©

The System-On-Chip Design Flow
Specify: 

–What does the customer really want?
Architect:

–What is the most cost and performance effective 
architecture to implement it?

–What existing components can I adapt and re-use?
Evaluate: 

–What is the performance impact of a cheaper architecture?
Implement:

–What can I generate automatically from libraries and 
customization?

Idea: separate computation, communication and performance
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The System-On-Chip  Design Flow
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The System-On-Chip  Design Flow

Annotation
of architectural 

timing and energy
onto behavior

Performance
Simulation

behavior annotated with 
architectural effects

Analyze / Visualize
Results

MPSOC’02 Summer School, France, July 2002 - 6Luciano Lavagno ©

Functional Modeling
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Communication Refinement
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Optimization

VLD IDCT DISPLAYBA
IZ,IQ

BA
MEMM MMC BA

MEMM

M

REAS

BUS

M

SEG

M

REAS

M

M

SEG

M

SEG

M

REAS



MPSOC’02 Summer School, France, July 2002 - 9Luciano Lavagno ©

Functional modeling
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Architectural Modeling
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Mapping
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Outline
System-on-chip design flow

–Functional and architectural modeling
–Mapping
–Performance simulation
–Communication refinement
– Implementation

Case study: wireless LAN architectural exploration
– functional model
–on-chip communication architectural model
–design space exploration
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Separate Delay ModelSeparate Delay Model

Annotated
IP Functional Model

my_ip() {
f = x.read();
r = f * k;
__DelayCycles(2);
y.write(r); }

IP Functional Model
my_ip() {
f = x.read();
r = f * k;
y.write(r); }

Delay Script
// HW implem
delay() {
input(x);
run();
delay(2.0 / cps);
output(y); }

Inline Delay ModelInline Delay Model

Functional Model
my_ip() {
f = x.read();
r = f * k;
y.write(r); }

Performance Modeling
Communication

Refinement

Mapping

System
Behavior

System
Architecture

Performance
Simulation

Behavior
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Software Performance Estimation

Performance
Estimation

Compile
generated C and

run natively

ld
ld
op
ld
li
op
ts
--
br

Analyse
basic blocks

compute delays

Virtual Machine
Instructions

Architecture
Characterization

Generate new C
with delay annotations

v__st_tmp = v__st;
__DELAY(LI+LI+LI+LI+LI+LI+OPc);
startup(proc);
if (events[proc][0] & 1) {
__DELAY(OPi+LD+LI+OPc+LD+OPi+OPi+IF);

goto L16;
}

Specify behavior
and I/O

ANSI C
Input

v__st_tmp = v__st;
startup(proc);
if (events[proc][0] & 1)

goto L16;
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Communication refinement

P C

Module Interface

Bus independent Virtual Component Interface 
Write, Read (address, bus-able data chunk...) VCI

P C

VCI to Physical-Bus Wrapper

Physical Bus Transfers
e.g. Arbitrated PIBus protocol PHY

P C∞

Process

APP
Delay Independent API
e.g. unbounded FIFO Write, Read (vector of «any» type )

HW/SW Independent System 
Communications e.g. Bounded FIFO

P C

Module

SYS
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Communication refinement
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Communication refinement

HW SW
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Mapping communication links to a pattern
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Mapping communication links to a pattern
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Communication Refinement
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Performance simulation by mapping
F1 F2 F3 Function

A1 A2 A3
Architecture

Mapping

F1 F2 F3Comm Comm

Arbiter

Performance
simulation

model
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Performance simulation
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Exploring Design Trade Offs

Iteration through different mapping experiments
Gradual refinement of the design
Evaluation

–of the "refined" design
–of system performance after implementation

Export implementation to
–Testbench and top-level netlist
–Hardware netlist
–Software RTOS customization
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Outline
System-on-chip design flow

–Functional and architectural modeling
–Mapping
–Performance simulation
–Communication refinement
– Implementation

Case study: wireless LAN architectural exploration
– functional model
–on-chip communication architectural model
–design space exploration
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Implementation by mapping

F1 F2 F3

Intfc Intfc

BUS
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Implementation
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Flow To Implementation

Flow To Implementation
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Top-level

System
Test Bench
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on RTOS

System Exploration
Communication Refinement

Export refined design to co-verification 
and implementation tools
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Flow to Implementation

Architecture

Task
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Task
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Task
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Task
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Customizing RTOS
$<StandardHeader,'RTOS rootialization'>
$<RtosAndCpuIncludes>
$<BoardSupportPackageIncludes>
$<LynxSwIncludes>
/* Device Driver includes/device handle decls */
$<LynxDriverIncludes>
$<LynxDeviceHandleDecs>
/* Mutex semaphore per protected data-buffer */
$<MutexVariableDefinitions>
/* Define an identifier for each task                   */
$<TaskIdDefinitions>

void root(void ) {
/* Mutex semaphore per protected data-buffer */

$<CreateMutexes>
/* Create each software task                             */

$<CreateTasks>
/* Register interrupt service routines                 */

$<RegisterInterrupts>
/* Schedule each software task.                        */

$<StartTasks>
/* Delete or suspend the root task.                    */

$<DeleteSelf>
}

#include <psos.h>
#include "init.h"
#include "tasks.h"
/* Device Driver includes/device handle decls */
#include "drivers.h"
/* Mutex semaphore per protected data-buffer */
unsigned long I_24_I_50_MainDisp_mutex;
unsigned long I_24_I_50_SubDisp_mutex;
/* Define an identifier for each task                   */
unsigned long task_I_13_I_6__ready;
unsigned long task_I_26__ready;

void root(void ) {
/* Mutex semaphore per protected data-buffer */
k_fatal(0x20000004, K_LOCAL);
k_fatal(0x20000004, K_LOCAL);
/* Create each software task                             */

if (t_create("T0", 10, 1024, 1024, T_LOCAL|,
&task_I_13_I_6__ready)) k_fatal(0x20000001, 

if (t_create("T1", 11, 1024, 1024, T_LOCAL|,
&task_I_26__ready)) k_fatal(0x20000001,
…
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Creating SW Communication Code
#include <psos.h>
#define LYNX_BEGIN_ATOMIC() OSDisableInt()
#define LYNX_END_ATOMIC() OSEnableInt()
#define LYNX_SET_PENDING(taskEventName) ev_receive(allevents, \

(EV_ANY || EV_NOWAIT), 0, events_r)
#define LYNX_SET_READY(taskEventName) ev_send(taskEventName, allevents)
#define LYNX_MUTEX_REQUEST(mutex) sm_p(mutex, SM_WAIT, 0)
#define LYNX_MUTEX_RELEASE(mutex) sm_v(mutex)
#define LYNX_ISR_ENTER() OSEnterISR()
#define LYNX_ISR_EXIT()  OSExitISR()

void lynx_Run(lynx_inst_ident_t inst_id)
{
char buffinput[10] = "";

if (lynx_Enabled(inst_id,in)){
lynx_Value(inst_id, in, &buffinput);
... behaviour d functionality ....

lynx_Post(inst_id, out, &buffinput);
}#define I_31_I_64_Value_MainDisp(inst_id, buff_p) \

( ( \
(LYNX_MUTEX_REQUEST(I_3_DM_1_X_mutex)), \
(LYNX_MEMCPY(buff_p,&I_3_DM_1_X,sizeof(I_3_DM_1_X))), \
(Probe_I_31_I_64_Value_MainDisp), \
(LYNX_MUTEX_RELEASE(I_3_DM_1_X_mutex)) ), &I_3_DM_1_X\

)

MPSOC’02 Summer School, France, July 2002 - 30Luciano Lavagno ©

Creating HW Communication Code
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Creating Testbench
A

C
B D

Test1

Test2

System-level Simulation

Results DB

Results DB

A

C
B D
Co-Verification

Source

Source
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Comparing Results
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Outline
System-on-chip design flow

–Functional and architectural modeling
–Mapping
–Performance simulation
–Communication refinement
– Implementation

Case study: wireless LAN architectural exploration
– functional model
–on-chip communication architectural model
–design space exploration
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Case study: wireless LAN physical layer

MAC

OFDM TX OFDM RX
Dynamic
Reconfiguration

Network

Application

HiperLan/2

PicoRadio

Protocol Stack

MultiMedia Wireless
Networks;
High Rate: 10 Mb/sec
Low Power: 10-100 mW

Ad Hoc Networks:
Low Rate: b/sec - kb/sec
Low Power: 100µW

OFDM Physical 
Layer/Digital BB
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From board to SOC
ASIC FPGA

Microcontroller

bus

AD
AD

DAPA

Analog front end

AD
AD

DAPA

FPGA

Microcontroller

crossbar bus

f0 f1 f2

digital 
modem

protocoluser
interface

clock
manager

sleep mode
mngmt

bloc
turbo 
codec

AD
AD

DAPA

Which  microcontroller?
Do I need more FPGA?
DSP in place of ASIC?
Which MAC? 
Where will the MAC run? 
Which other applications 
can I add?
Is the chip reusable?
Does it have too much 
memory?
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Implementation

Design Flow Application Specification

Algorithm Exploration

Functional Simulation 
and Refinement

Architecture Exploration:
Performance Simulation

Architecture Refinement

COSSAP/C (Matlab/Simulink, …)
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VCC (SystemStudio, …)
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Top-level Hiperlan/2 Functional Model
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Hiperlan/2 OFDM Transmitter
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Hiperlan/2 OFDM Receiver
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Heterogeneous Behavior
MAC

GoT GoR

Preamble

DataPath

TX – Static Dataflow RX – Dynamic Dataflow

Sym

DataPath

Sync

CostToRCostToT

RXTX

Idle
State

GoT GoR

GoT/GoR

Control-FSM

N N
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void CPP_MODEL_IMPLEMENTATION::Init() 
{

….; Length = LenghtPar.Value(); // read parameter
// Set data rate on 2 input ports: Real and Imag
Real.SetDataRate(Length);
Imag.SetDataRate(Length);

}
// Run() is executed every time the firing rule is satisfied
void CPP_MODEL_IMPLEMENTATION::Run() 
{

for (i=0; i<Real.GetDataRate(); i++) {
// Read data from the input ports
data[i] [0] = Real.Value(); 
data[i] [1] = Imag.Value();

}
// Call the FFT procedure (C functional model)
fft_cns_rot_bfp(data,….);
// Write data to two output ports (OutReal, OutImag)
for( i=0; i< Lenght; i++) {

OutReal.Post(data[i][0]);
OutImag.Post(data[i][1]);}}

}
}

Example of functional block

FFTReal

Imag

OutReal

OutImag

LenghtPar = 64

Imported from Cossap
environment

64

64
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Outline
System-on-chip design flow

–Functional and architectural modeling
–Mapping
–Performance simulation
–Communication refinement
– Implementation

Case study: wireless LAN architectural exploration
– functional model
–on-chip communication architectural model
–design space exploration
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Wireless LAN physical layer SOC architecture

FPGA FFT FIR UART BUFFER

FPGA 
config. mem. Int. bridge

Micro 
-
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data RAM)
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Interface

Processor bus
Interface
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TEST(0..2)

Ck, reset

CK2 CK1   MCK VDD VSS Reset

I/D 
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Datapath
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Crossbar features
The crossbar model is flexible in the number of masters 
and slaves supported 
(evaluated at simulation initialization time)
A prioritized FIFO is used to arbitrate multiple master 
requests for each slave
Number of parallel slave accesses defined through a 
parameter
A transmission can be suspended by higher priority 
requests (preemptive)
Arbitration overhead and slave access delays are 
parameterized
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Crossbar Architecture Service Structure
Beh1 Beh2

Post() Value() Behavior 
Network

XBAR

FPGA MEM FFT
Architecture 
Network

DFSHAREDMEMORY (HW->HW)
Communication 
Pattern

XBarArbiter

Sender Receiver

XBarMaster
XBarSlave

Memory

XBarMasterFPGA PORT

MEM

MEM PORT
FFT PORT

BUS

Service Stack

Mem0
Mem1
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Crossbar Architecture Service Structure
Beh1 Beh2

Post() Value() Behavior 
Network

XBAR

FPGA MEM FFT
Architecture 
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DFREGISTERDIRECT (HW->HW)
Communication 
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Sender Service Communication Refinement

DFSharedMemory

void Init() {…. 
// Evaluate the buffer size.

bitSize_ = typeInfo.bitsPerByte() * typeInfo.getTypeSize(&TypeOf());
// Read parameter Rate
void SetDataRate(int rate){dataRate_ = rate; }
// Redefine Post
void Post_(const typeObject& a, double delay) {….
numPosted_++;
if (numPosted_== dataRate_) {
numPosted_=0;

// Generate a transaction record 
trans_.setTransactionType(vccTransWriteNoStore);
trans_.setTransferSize(bitSize_);
trans_.setTargetAddress(dataAddr_);

// Submit the buffer transaction to the bus
busAdapter.busRequest(&trans_);…}

Pattern Sender Service

Void Init(){
…Out.SetDataRate(Rate);}
Void Run(){
…; for(i=0;i<Rate;i++)

Out.Post(Data);}
Behavior
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Design Space Exploration
Explored several computation/communication architecture 
configurations

–FFT throughput (¼ clock cycle vs 1 clock cycle)
–Number of buffer ports FFT FIR on crossbar
–FPGA FFT communication pattern 

–Shared Memory
–Register Direct
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Exploration Results
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Conclusion
System-On-Chip Design requires methodology, tools and 
libraries
Separate computation, communication and architecture

–computation: compiled and scheduled
–communication: refined via patters

Map computation and communication onto platform
–simulate performance
–generate implementation model for HW, SW and 

communication


