
1

A methodology for
design space exploration of
on-chipnetworks

Luciano Lavagno
Politecnico di Torino, Italy lavagno@polito.it
Cadence Berkeley Labs, CA http://polimage.polito.it/~lavagno
Laura Vanzago
STMicroelectronics laura.vanzago@st.com

MPSOC’02 Summer School, France, July 2002 - 2Luciano Lavagno ©

Outline
System-on-chip design flow

–Functional and architectural modeling
–Mapping
–Performance simulation
–Communication refinement
– Implementation

Case study: wireless LAN architectural exploration
– functional model
–on-chip communication architectural model
–design space exploration

MPSOC’02 Summer School, France, July 2002 - 3Luciano Lavagno ©

The System-On-Chip Design Flow
Specify:

–What does the customer really want?
Architect:

–What is the most cost and performance effective
architecture to implement it?

–What existing components can I adapt and re-use?
Evaluate:

–What is the performance impact of a cheaper architecture?
Implement:

–What can I generate automatically from libraries and
customization?

Idea: separate computation, communication and performance

MPSOC’02 Summer School, France, July 2002 - 4Luciano Lavagno ©

The System-On-Chip Design Flow

Communication
Refinement

Mapping

System
Behavior

System
Architecture

Performance
Simulation

Behavior
Simulation

21

3

4
Flow To Implementation

MPSOC’02 Summer School, France, July 2002 - 5Luciano Lavagno ©

The System-On-Chip Design Flow

Annotation
of architectural

timing and energy
onto behavior

Performance
Simulation

behavior annotated with
architectural effects

Analyze / Visualize
Results

MPSOC’02 Summer School, France, July 2002 - 6Luciano Lavagno ©

Functional Modeling

MPEG Decoder

VLD IDCT MC DISPLAYBA
IZ,IQ

BA
MEM

BA
MEMM M M M MM

M

MPSOC’02 Summer School, France, July 2002 - 7Luciano Lavagno ©

Communication Refinement

VLD IDCT MC DISPLAYBA
IZ,IQ

BA
MEM

BA
MEMM M M M MM

M

VLD IDCT MC DISPLAYBA
IZ,IQ

BA
MEM

BA
MEMM MM

M

REAS

BUS

M

SEG

M

REAS

M

M

SEG

M

SEG

M

REAS

MPSOC’02 Summer School, France, July 2002 - 8Luciano Lavagno ©

Optimization

VLD IDCT DISPLAYBA
IZ,IQ

BA
MEMM MMC BA

MEMM

M

REAS

BUS

M

SEG

M

REAS

M

M

SEG

M

SEG

M

REAS

MPSOC’02 Summer School, France, July 2002 - 9Luciano Lavagno ©

Functional modeling
Communication

Refinement

Mapping

System
Behavior

System
Architecture

Performance
Simulation

Behavior
Simulation

21

3

4
Flow To Implementation

MPSOC’02 Summer School, France, July 2002 - 10Luciano Lavagno ©

Architectural Modeling
Communication

Refinement

Mapping

System
Behavior

System
Architecture

Performance
Simulation

Behavior
Simulation

21

3

4
Flow To Implementation

MPSOC’02 Summer School, France, July 2002 - 11Luciano Lavagno ©

Mapping
Communication

Refinement

Mapping

System
Behavior

System
Architecture

Performance
Simulation

Behavior
Simulation

21

3

4
Flow To Implementation

MPSOC’02 Summer School, France, July 2002 - 12Luciano Lavagno ©

Outline
System-on-chip design flow

–Functional and architectural modeling
–Mapping
–Performance simulation
–Communication refinement
– Implementation

Case study: wireless LAN architectural exploration
– functional model
–on-chip communication architectural model
–design space exploration

MPSOC’02 Summer School, France, July 2002 - 13Luciano Lavagno ©

Separate Delay ModelSeparate Delay Model

Annotated
IP Functional Model

my_ip() {
f = x.read();
r = f * k;
__DelayCycles(2);
y.write(r); }

IP Functional Model
my_ip() {
f = x.read();
r = f * k;
y.write(r); }

Delay Script
// HW implem
delay() {
input(x);
run();
delay(2.0 / cps);
output(y); }

Inline Delay ModelInline Delay Model

Functional Model
my_ip() {
f = x.read();
r = f * k;
y.write(r); }

Performance Modeling
Communication

Refinement

Mapping

System
Behavior

System
Architecture

Performance
Simulation

Behavior
Simulation

21

3

4
Flow To Implementation

MPSOC’02 Summer School, France, July 2002 - 14Luciano Lavagno ©

Software Performance Estimation

Performance
Estimation

Compile
generated C and

run natively

ld
ld
op
ld
li
op
ts
--
br

Analyse
basic blocks

compute delays

Virtual Machine
Instructions

Architecture
Characterization

Generate new C
with delay annotations

v__st_tmp = v__st;
__DELAY(LI+LI+LI+LI+LI+LI+OPc);
startup(proc);
if (events[proc][0] & 1) {
__DELAY(OPi+LD+LI+OPc+LD+OPi+OPi+IF);

goto L16;
}

Specify behavior
and I/O

ANSI C
Input

v__st_tmp = v__st;
startup(proc);
if (events[proc][0] & 1)

goto L16;

MPSOC’02 Summer School, France, July 2002 - 15Luciano Lavagno ©

Communication refinement

P C

Module Interface

Bus independent Virtual Component Interface
Write, Read (address, bus-able data chunk...) VCI

P C

VCI to Physical-Bus Wrapper

Physical Bus Transfers
e.g. Arbitrated PIBus protocol PHY

P C∞

Process

APP
Delay Independent API
e.g. unbounded FIFO Write, Read (vector of «any» type)

HW/SW Independent System
Communications e.g. Bounded FIFO

P C

Module

SYS

MPSOC’02 Summer School, France, July 2002 - 16Luciano Lavagno ©

Communication refinement

fifowtr

dest

ITC

fifo
writer

MEM

prod-
ucer

chan.
writer

wake
up

writer

filter

chan.
reader

RTOS
queue

fifo
reader

n

CPU

RTOS board support package

wrapper

hw tasksw task

Interrupt
service routine

src

VCI

PHY

SYS

SYS

MPSOC’02 Summer School, France, July 2002 - 17Luciano Lavagno ©

Communication refinement

HW SW

Communication
Refinement

Mapping

System
Behavior

System
Architecture

Performance
Simulation

Behavior
Simulation

21

3

4
Flow To Implementation

RPE-LTP
Encoder

Channel
Coder Interleaver

Modulator

Demodulator
De-interleaver Channel

Decoder
RPE-LTP
Decoder

From RF

To RF

Speech
Out

Protocol
Stack

Control
Data

Multiplexer

De-
multiplexer

Speech In

Control
Data

Protocol
StackFigure 1

DSP
DSP

Internal
RAM

BUS

Microprocessor RAM Dedicated
Hardware

Figure 2

Figure 3

Ad
dr

es
s

de
co

de
r

D
riv

erHW SW

SemProt_Send

A B

CPU Mem

RTOS

mutex_l
ock;

memcpy;
signal

Post(5)

write

busRequest
arbiterRequest/

Release

busIndica
tion

setEnabled

Value()

wait
;

memc
py;
sign
al

read

Semaphore
Protected

busRequest
arbiterRequest/

Release

busIndicat
ion

User Visible
SwMutexes

BusMaster SlaveAdapter

BusArbiter

MemoryAccess Architecture Services

SemProt_Send SemProt_Recv

Pattern Services

MPSOC’02 Summer School, France, July 2002 - 18Luciano Lavagno ©

Mapping communication links to a pattern

MPSOC’02 Summer School, France, July 2002 - 19Luciano Lavagno ©

Mapping communication links to a pattern

MPSOC’02 Summer School, France, July 2002 - 20Luciano Lavagno ©

Communication Refinement
A B

CPU Mem

RTOS

mutex_lck
memcpy
signal

Post(5)

write

busRequest

arbiterReq/Release

busResponse

setEnabled

Value()

wait
memcpy
signal

read

busRequest

arbiterReq/Release

busResponse

Computation
SwMutexes

BusMaster SlaveAdapter

BusArbiter

MemoryAccess Arch. Services

Semaphore
ProtectedSemProt_Send SemProt_Recv

Comm. Services

MPSOC’02 Summer School, France, July 2002 - 21Luciano Lavagno ©

Performance simulation by mapping
F1 F2 F3 Function

A1 A2 A3
Architecture

Mapping

F1 F2 F3Comm Comm

Arbiter

Performance
simulation

model

MPSOC’02 Summer School, France, July 2002 - 22Luciano Lavagno ©

Performance simulation

Software Gantt Charts

Architecture Analysis

Communication
Refinement

Mapping

System
Behavior

System
Architecture

Performance
Simulation

Behavior
Simulation

21

3

4
Flow To Implementation

MPSOC’02 Summer School, France, July 2002 - 23Luciano Lavagno ©

Exploring Design Trade Offs

Iteration through different mapping experiments
Gradual refinement of the design
Evaluation

–of the "refined" design
–of system performance after implementation

Export implementation to
–Testbench and top-level netlist
–Hardware netlist
–Software RTOS customization

MPSOC’02 Summer School, France, July 2002 - 24Luciano Lavagno ©

Outline
System-on-chip design flow

–Functional and architectural modeling
–Mapping
–Performance simulation
–Communication refinement
– Implementation

Case study: wireless LAN architectural exploration
– functional model
–on-chip communication architectural model
–design space exploration

MPSOC’02 Summer School, France, July 2002 - 25Luciano Lavagno ©

Implementation by mapping

F1 F2 F3

Intfc Intfc

BUS

F1 F2 F3

A1 A2 A3

Function

Architecture

Intfc Intfc

Mapping

Implementation
model

MPSOC’02 Summer School, France, July 2002 - 26Luciano Lavagno ©

Communication
Refinement

Mapping

System
Behavior

System
Architecture

Performance
Simulation

Behavior
Simulation

21

3

4

Flow to Implementation

Flow To Implementation

Flow To Implementation

Hardware
Top-level

System
Test Bench

Software
on RTOS

System Exploration
Communication Refinement

Export refined design to co-verification
and implementation tools

MPSOC’02 Summer School, France, July 2002 - 27Luciano Lavagno ©

Flow to Implementation

Architecture

Task
X

Task
Y

RTOS
ISR
W

CPU
ASIC

bus

RAMROM

Behavior

A

B

C
D

E F

G

I
J

H

MPSOC’02 Summer School, France, July 2002 - 28Luciano Lavagno ©

Task
X

Task
Y

RTOS

CPU

A

B

C

D

E

Customizing RTOS
$<StandardHeader,'RTOS rootialization'>
$<RtosAndCpuIncludes>
$<BoardSupportPackageIncludes>
$<LynxSwIncludes>
/* Device Driver includes/device handle decls */
$<LynxDriverIncludes>
$<LynxDeviceHandleDecs>
/* Mutex semaphore per protected data-buffer */
$<MutexVariableDefinitions>
/* Define an identifier for each task */
$<TaskIdDefinitions>

void root(void) {
/* Mutex semaphore per protected data-buffer */

$<CreateMutexes>
/* Create each software task */

$<CreateTasks>
/* Register interrupt service routines */

$<RegisterInterrupts>
/* Schedule each software task. */

$<StartTasks>
/* Delete or suspend the root task. */

$<DeleteSelf>
}

#include <psos.h>
#include "init.h"
#include "tasks.h"
/* Device Driver includes/device handle decls */
#include "drivers.h"
/* Mutex semaphore per protected data-buffer */
unsigned long I_24_I_50_MainDisp_mutex;
unsigned long I_24_I_50_SubDisp_mutex;
/* Define an identifier for each task */
unsigned long task_I_13_I_6__ready;
unsigned long task_I_26__ready;

void root(void) {
/* Mutex semaphore per protected data-buffer */
k_fatal(0x20000004, K_LOCAL);
k_fatal(0x20000004, K_LOCAL);
/* Create each software task */

if (t_create("T0", 10, 1024, 1024, T_LOCAL|,
&task_I_13_I_6__ready)) k_fatal(0x20000001,

if (t_create("T1", 11, 1024, 1024, T_LOCAL|,
&task_I_26__ready)) k_fatal(0x20000001,
…

MPSOC’02 Summer School, France, July 2002 - 29Luciano Lavagno ©

Task
X

Task
Y

RTOS

CPU

A

B

C

D

E

Creating SW Communication Code
#include <psos.h>
#define LYNX_BEGIN_ATOMIC() OSDisableInt()
#define LYNX_END_ATOMIC() OSEnableInt()
#define LYNX_SET_PENDING(taskEventName) ev_receive(allevents, \

(EV_ANY || EV_NOWAIT), 0, events_r)
#define LYNX_SET_READY(taskEventName) ev_send(taskEventName, allevents)
#define LYNX_MUTEX_REQUEST(mutex) sm_p(mutex, SM_WAIT, 0)
#define LYNX_MUTEX_RELEASE(mutex) sm_v(mutex)
#define LYNX_ISR_ENTER() OSEnterISR()
#define LYNX_ISR_EXIT() OSExitISR()

void lynx_Run(lynx_inst_ident_t inst_id)
{
char buffinput[10] = "";

if (lynx_Enabled(inst_id,in)){
lynx_Value(inst_id, in, &buffinput);
... behaviour d functionality

lynx_Post(inst_id, out, &buffinput);
}#define I_31_I_64_Value_MainDisp(inst_id, buff_p) \

((\
(LYNX_MUTEX_REQUEST(I_3_DM_1_X_mutex)), \
(LYNX_MEMCPY(buff_p,&I_3_DM_1_X,sizeof(I_3_DM_1_X))), \
(Probe_I_31_I_64_Value_MainDisp), \
(LYNX_MUTEX_RELEASE(I_3_DM_1_X_mutex))), &I_3_DM_1_X\

)

MPSOC’02 Summer School, France, July 2002 - 30Luciano Lavagno ©

Creating HW Communication Code
D G

I
J

H

Task
Y

RTOS
ISR
W

CPU
ASIC

bus

Interrupt
Register
Mapped

Data bus (16)

ASICCPU
Addressr bus

D
B
u
s

I
n
t
f
a
c
e

64

ISR

Interrupt bus

= data buffer

= presence bit

= memcpy (64 bit read)

= frozen data buffer

= LYNX

Interrupt
Register
Mapped16 G

I

H
8

32

Interrupt
Register
Mapped16

J

64

MPSOC’02 Summer School, France, July 2002 - 31Luciano Lavagno ©

Creating Testbench
A

C
B D

Test1

Test2

System-level Simulation

Results DB

Results DB

A

C
B D
Co-Verification

Source

Source

MPSOC’02 Summer School, France, July 2002 - 32Luciano Lavagno ©

Comparing Results

MPSOC’02 Summer School, France, July 2002 - 33Luciano Lavagno ©

Outline
System-on-chip design flow

–Functional and architectural modeling
–Mapping
–Performance simulation
–Communication refinement
– Implementation

Case study: wireless LAN architectural exploration
– functional model
–on-chip communication architectural model
–design space exploration

MPSOC’02 Summer School, France, July 2002 - 34Luciano Lavagno ©

Case study: wireless LAN physical layer

MAC

OFDM TX OFDM RX
Dynamic
Reconfiguration

Network

Application

HiperLan/2

PicoRadio

Protocol Stack

MultiMedia Wireless
Networks;
High Rate: 10 Mb/sec
Low Power: 10-100 mW

Ad Hoc Networks:
Low Rate: b/sec - kb/sec
Low Power: 100µW

OFDM Physical
Layer/Digital BB

MPSOC’02 Summer School, France, July 2002 - 35Luciano Lavagno ©

From board to SOC
ASIC FPGA

Microcontroller

bus

AD
AD

DAPA

Analog front end

AD
AD

DAPA

FPGA

Microcontroller

crossbar bus

f0 f1 f2

digital
modem

protocoluser
interface

clock
manager

sleep mode
mngmt

bloc
turbo
codec

AD
AD

DAPA

Which microcontroller?
Do I need more FPGA?
DSP in place of ASIC?
Which MAC?
Where will the MAC run?
Which other applications
can I add?
Is the chip reusable?
Does it have too much
memory?

MPSOC’02 Summer School, France, July 2002 - 36Luciano Lavagno ©
Implementation

Design Flow Application Specification

Algorithm Exploration

Functional Simulation
and Refinement

Architecture Exploration:
Performance Simulation

Architecture Refinement

COSSAP/C (Matlab/Simulink, …)

English (UML, …)

VCC (SystemStudio, …)

VCC (SystemStudio, …)

TX

OFDM RXOFDM TX

RX

OFDM Physical
Layer

MAC, Network and
Higher Layers

Functional
IP Reuse

Mapping

C

Mapping

Functional
Partitioning

MPSOC’02 Summer School, France, July 2002 - 37Luciano Lavagno ©

Top-level Hiperlan/2 Functional Model

MPSOC’02 Summer School, France, July 2002 - 38Luciano Lavagno ©

Hiperlan/2 OFDM Transmitter

MPSOC’02 Summer School, France, July 2002 - 39Luciano Lavagno ©

Hiperlan/2 OFDM Receiver

MPSOC’02 Summer School, France, July 2002 - 40Luciano Lavagno ©

Heterogeneous Behavior
MAC

GoT GoR

Preamble

DataPath

TX – Static Dataflow RX – Dynamic Dataflow

Sym

DataPath

Sync

CostToRCostToT

RXTX

Idle
State

GoT GoR

GoT/GoR

Control-FSM

N N

MPSOC’02 Summer School, France, July 2002 - 41Luciano Lavagno ©

void CPP_MODEL_IMPLEMENTATION::Init()
{

….; Length = LenghtPar.Value(); // read parameter
// Set data rate on 2 input ports: Real and Imag
Real.SetDataRate(Length);
Imag.SetDataRate(Length);

}
// Run() is executed every time the firing rule is satisfied
void CPP_MODEL_IMPLEMENTATION::Run()
{

for (i=0; i<Real.GetDataRate(); i++) {
// Read data from the input ports
data[i] [0] = Real.Value();
data[i] [1] = Imag.Value();

}
// Call the FFT procedure (C functional model)
fft_cns_rot_bfp(data,….);
// Write data to two output ports (OutReal, OutImag)
for(i=0; i< Lenght; i++) {

OutReal.Post(data[i][0]);
OutImag.Post(data[i][1]);}}

}
}

Example of functional block

FFTReal

Imag

OutReal

OutImag

LenghtPar = 64

Imported from Cossap
environment

64

64

MPSOC’02 Summer School, France, July 2002 - 42Luciano Lavagno ©

Outline
System-on-chip design flow

–Functional and architectural modeling
–Mapping
–Performance simulation
–Communication refinement
– Implementation

Case study: wireless LAN architectural exploration
– functional model
–on-chip communication architectural model
–design space exploration

MPSOC’02 Summer School, France, July 2002 - 43Luciano Lavagno ©

Wireless LAN physical layer SOC architecture

FPGA FFT FIR UART BUFFER

FPGA
config. mem. Int. bridge

Micro
-

Clock
gen.

SPS2
(instruction/
data RAM)

XBAR
Interface

Processor bus
Interface

XBAR

Processor bus

Jtag
Interface

DPR2/SPS2
Bridge

TEST(0..2)

Ck, reset

CK2 CK1 MCK VDD VSS Reset

I/D
caches

Datapath

MPSOC’02 Summer School, France, July 2002 - 44Luciano Lavagno ©

Crossbar features
The crossbar model is flexible in the number of masters
and slaves supported
(evaluated at simulation initialization time)
A prioritized FIFO is used to arbitrate multiple master
requests for each slave
Number of parallel slave accesses defined through a
parameter
A transmission can be suspended by higher priority
requests (preemptive)
Arbitration overhead and slave access delays are
parameterized

MPSOC’02 Summer School, France, July 2002 - 45Luciano Lavagno ©

Crossbar Architecture Service Structure
Beh1 Beh2

Post() Value() Behavior
Network

XBAR

FPGA MEM FFT
Architecture
Network

DFSHAREDMEMORY (HW->HW)
Communication
Pattern

XBarArbiter

Sender Receiver

XBarMaster
XBarSlave

Memory

XBarMasterFPGA PORT

MEM

MEM PORT
FFT PORT

BUS

Service Stack

Mem0
Mem1

MPSOC’02 Summer School, France, July 2002 - 46Luciano Lavagno ©

Crossbar Architecture Service Structure
Beh1 Beh2

Post() Value() Behavior
Network

XBAR

FPGA MEM FFT
Architecture
Network

DFREGISTERDIRECT (HW->HW)
Communication
Pattern

XBarArbiter

Sender Receiver

XBarMaster XBarMasterFPGA PORT FFT PORT

BUS

Service Stack

MPSOC’02 Summer School, France, July 2002 - 47Luciano Lavagno ©

Sender Service Communication Refinement

DFSharedMemory

void Init() {….
// Evaluate the buffer size.

bitSize_ = typeInfo.bitsPerByte() * typeInfo.getTypeSize(&TypeOf());
// Read parameter Rate
void SetDataRate(int rate){dataRate_ = rate; }
// Redefine Post
void Post_(const typeObject& a, double delay) {….
numPosted_++;
if (numPosted_== dataRate_) {
numPosted_=0;

// Generate a transaction record
trans_.setTransactionType(vccTransWriteNoStore);
trans_.setTransferSize(bitSize_);
trans_.setTargetAddress(dataAddr_);

// Submit the buffer transaction to the bus
busAdapter.busRequest(&trans_);…}

Pattern Sender Service

Void Init(){
…Out.SetDataRate(Rate);}
Void Run(){
…; for(i=0;i<Rate;i++)

Out.Post(Data);}
Behavior

MPSOC’02 Summer School, France, July 2002 - 48Luciano Lavagno ©

Outline
System-on-chip design flow

–Functional and architectural modeling
–Mapping
–Performance simulation
–Communication refinement
– Implementation

Case study: wireless LAN architectural exploration
– functional model
–on-chip communication architectural model
–design space exploration

MPSOC’02 Summer School, France, July 2002 - 49Luciano Lavagno ©

Design Space Exploration
Explored several computation/communication architecture
configurations

–FFT throughput (¼ clock cycle vs 1 clock cycle)
–Number of buffer ports FFT FIR on crossbar
–FPGA FFT communication pattern

–Shared Memory
–Register Direct

MPSOC’02 Summer School, France, July 2002 - 50Luciano Lavagno ©

Exploration Results

0

500

1000

1500

2000

2500

3000

3500

4000

SimA1 SimB1 SimC1 SimD1 SimA2 SimB2 SimC2 SimD2

FPGA FFT FIR

FFT:1/4 FFT:1/1
RD SM RDSM

5.8 7.2 8.2 8.2 9.6 13.7 12.5 15.6BitRate (Mb/s) 12

1P 2P 1P 2P 1P 2P 1P 2P

Hiperlan/2
spec.

MPSOC’02 Summer School, France, July 2002 - 51Luciano Lavagno ©

Conclusion
System-On-Chip Design requires methodology, tools and
libraries
Separate computation, communication and architecture

–computation: compiled and scheduled
–communication: refined via patters

Map computation and communication onto platform
–simulate performance
–generate implementation model for HW, SW and

communication

