
 R. Ernst, TU Braunschweig 1

MPSoC Platform Performance Modeling

R. Ernst

TU Braunschweig

 R. Ernst, TU Braunschweig 2

Overview

• introduction

• architecture component modeling&analysis

• process execution modeling

• SW architecture

• modeling shared resources

• architecture and global analysis

• conclusion

 R. Ernst, TU Braunschweig 3

µC DSP RAM

IO IRQ

architecture
parameters

performance data

performance analysis

application variants

mapping

developer

developer

The role of performance modeling

design under target
architecture estimations

design under target
architecture estimations

analysis and result
back annotation

analysis and result
back annotation

µC
DSP
RAM
IO
IRQ

architecture
template

 R. Ernst, TU Braunschweig 4

Platform HW complexity

CPU Core
CPU Core

On-Chip
ROM

On-Chip
SRAM

Wrapper

CPU Core

User zone (project proprietary)

GP I/OsUARTInterrupt
Controller

Static Mem.
Interface

AHB - APB
Bridge

Real Time
Counters

RAM
 Controller

ROM
 Controller

BISTBIST

Arbiter

AMBA - APB

AMBA - AHB

User zone

SRAM

Address
Decoder

Register
Bank

SDRAM

AHB to AHB
Bridge

AMBA - AHB

SDRAM Ctrl
16 bit

32 bit

Multi
Channel
SDRAM

Ctrl

AHB I/F

PIB I/F

User Defined AHB/APB
Masters/Slaves

Flash
Controller JTAG

SDRAM

Source: M. Münch, Alcatel

 R. Ernst, TU Braunschweig 5

Platform component types
• Another example: Philips NexperiaTM platform

(Source: Th. Claasen, DAC 2000)

SDRAMSDRAM

TM-core
D$

I$

TriMedia CPU

DEVICE I/P BLOCKDEVICE I/P BLOCK

DEVICE I/P BLOCKDEVICE I/P BLOCK

DEVICE I/P BLOCKDEVICE I/P BLOCK

.

.

.

DVP System Silicon

PI
 B

U
S

MMI

D
VP

 M
EM

O
R

Y
B

U
S

DEVICE I/P BLOCKDEVICE I/P BLOCK

core
D$

I$

MIPS CPU

DEVICE I/P BLOCKDEVICE I/P BLOCK
.
.
.

DEVICE I/P BLOCKDEVICE I/P BLOCK PI
 B

U
S

TriMediaTMMIPSTM

programmable
processors

OS + API + custom SW

weakly
programmable
co-processors

configurable
IP components

memories

communication
components

 R. Ernst, TU Braunschweig 6

Platform architectures are heterogeneous

• different processing element types
– processors, weakly programmable coprocessors, IP

 components

• different interconnection networks and communication
protocols

• different memory types

• different scheduling and synchronization strategies

M

CoP

M

M

PDSP

M

P

 R. Ernst, TU Braunschweig 7

Managing HW platform complexity

• development of APIs to hide complexity from application
programmer and improve portability

• specialized RTOS to control resource sharing and
interfaces

⇒ complex multi-level HW/SW architecture

 R. Ernst, TU Braunschweig 8

Software architecture example

Chip Bus

core

RTOS

I/O Int Bus-
CTRL

timer
timer

drivers

RTOS-APIs

application

periphery

cache

mem
private

private

private

private

sh
ar

ed

hardware

software

architecture

application

• layered software architecture with API

⇒ SW is heterogeneous

ce1

pe1

API

 R. Ernst, TU Braunschweig 9

Platform design challenges

• integration
– design process integration
– heterogeneous component and language integration (VSIA,

Accellera)

• design space exploration and optimization

• verification

 R. Ernst, TU Braunschweig 10

Platform verification

• correct implementation of specified function
• HW/SW co-simulation (CVE, CoWare,

CoCentric, VCC), verification

• correct target architecture parameters
• processor and communication performance
• adherence to timing requirements
• no memory over/underflow
• no run-time dependent dead-locks

general
design
problem

challenge to
heterogeneous
platform design

 R. Ernst, TU Braunschweig 11

Complex run-time interdependencies

• run-time dependencies of independent components via
communication

• influence on timing and power

IP

M

P

M

P

M

 R. Ernst, TU Braunschweig 12

Interdependency example

• complex heterogeneous systems

• complex non-functional interdependencies

• complex system corner cases

RISCMEM

SYSTEM BUSSYSTEM BUS

short execution time
⇒ high bus load

long execution time
⇒ low bus load

 R. Ernst, TU Braunschweig 13

MPSoC platform verification - state of the art

• current approach: Target architecture co-simulation
• combines functional and performance validation
• reuse component validation pattern for system integration and

function test
• reuse application benchmarks for target architecture function

validation
• visualization of system execution
• extensive simulation run times to include many test cases

 R. Ernst, TU Braunschweig 14

Co-simulation limitations

• identification of system performance corner cases
– different from component performance corner cases
– target architecture behavior unknown to the application

function developer (cp. functional HW test)
⇒ test case definition and selection ?

• analysis of target architecture
– confusing variety of run-time interdependencies
– data dependent “transient” run-time effects
– mixed in co-simulation

⇒ limited support of design space exploration
⇒ debugging challenge

• inclusion of incomplete application specifications
⇒ additional performance models required

 R. Ernst, TU Braunschweig 15

Lecture objective

• better understanding of target architecture run-time effects

• propose approaches to improve and formalize analysis

 R. Ernst, TU Braunschweig 16

Target architecture analysis

• given
– an application and its environment modeled by a set of

communicating processes
– a heterogeneous HW/SW target architecture
– an implementation of the processes on the architecture

• model and analyze
– the target architecture information flow
– system timing

P P P
M

CoP

M

M

PDSP

M

P

 R. Ernst, TU Braunschweig 17

• architecture component timing

• subsystem timing

• system timing
IP

M P M P

M

P1 P2

Timing parameters

environment
model

 R. Ernst, TU Braunschweig 18

• architecture component timing
– process execution timing
– communication timing IP

M P M P

M

P1 P2

2 Architecture component modeling&analysis

• processing elements

• memories

• interconnect

 R. Ernst, TU Braunschweig 19

Processing elements

• processing elements
– fully programmable components (processors)

– weakly programmable coprocessors
components with selectable, predefined control sequences,
possibly with chaining (FP coprocessor, graphics processor, DMA,
...)

– hard coded function components

DSP RISC µµµµC

CAN bus
interface

ADC

multi-channel
module

image
coprocessor

VLIW

VLD
coprocessor

 R. Ernst, TU Braunschweig 20

Processing element timing

• processing element timing and communication determined by

• execution path
– control data dependent
– input data dependent

• function implementation
– component architecture
– software architecture
– compiler or synthesis

if ...

then ... else ...

for { ...

..}

 R. Ernst, TU Braunschweig 21

Processing element timing - 2

• process timing can be evaluated by
– simulation/performance monitoring, e.g. using break points

• stimuli, e.g. from component design
• data dependent execution →→→→ upper and lower timing bounds

– simulation challenges
• coverage?
• cache and context switch overhead due to run-time scheduling

with process preemptions
• influence of run-time scheduling depending on external event

timing
– formal analysis of individual process timing

• serious progress in recent years

⇔ process timing can be approximated or just estimated
(cp. VCC processor models)

 R. Ernst, TU Braunschweig 22

Formal execution path timing analysis

• execution path timing

)c(b)pe(btpeFt i
I

jipejpe ∑ ⋅= ,),(

then
...

else {
 send(..);
 receive (...);
... }

for { ...

..}

if ... b1
b2

b3

b4

F

bi basic block (Li/Malik)
or program segment (Ye/Ernst)

tpe(bi,pej) execution time of bi
on processing element pej

c(bi) execution frequency of bi
path dependent

worst/best case timing bounds
solved e.g. as ILP problem with flow
analysis (e.g. Li/Malik, Wolf/Ye/Ernst, ...)

 R. Ernst, TU Braunschweig 23

Implementation influence in tpe(bi)

• tpe(bi , pej) determined by
– processing element architecture
– compiler / HW synthesis
– API software

• tpe(bi , pej) analysis can use
– instruction execution table
– abstract execution model
– local bi simulation

requires compiler code analysis

 R. Ernst, TU Braunschweig 24

Process communication

• execution path communication

)c(b)r(bFr

)c(b)s(bFs

i
I

i

i
I

i

∑

∑

⋅=

⋅=

)(

)(
then
...

else {
 send(..);
 receive (...);
... }

for { ...

..}

if ... b1
b2

b3

b4

F

s(bi) sent data in bi

r(bi) received data in bi

worst/best case communication
analysis solved e.g. as ILP problem
(Wolf/Ernst)

 R. Ernst, TU Braunschweig 25

Implementation influence in r(bi) and s(bi)

• r(bi) and s(bi) determined by
– data volume
– data encoding
– communication protocol

 R. Ernst, TU Braunschweig 26

Interconnect timing

• interconnect timing can be evaluated by
– simulation, cp. process element timing
– statistical load data
– simple formal models, e.g. for TDMA

(e.g. MicroNetwork (Sonics))

⇔ interconnect timing can be approximated or just estimated

 R. Ernst, TU Braunschweig 27

Formal interconnect analysis

• word transfer

• packet transfer (simplified: fixed length pl)

)),1(()()),((jcomjcom cestxscexst ⋅=

)),(()()),((jcecom
ce

jcom ceplst
pl

xscexst
j

j

⋅

=

pei pek

cej

send(..) receive(..)

 R. Ernst, TU Braunschweig 28

Memories

• SRAM
– equal access time
– no control overhead

• FLASH, ROM, EPROM, EEPROM
– asymmetric read and write
– similar to SRAM otherwise

• DDRAM, RDRAM, SDRAM, SRAM, ...
– multiple banks
– burst access (packets)

• Cache
– various control mechanisms
– burst access to background (cache lines)

SDRAMSDRAM

SRAM

Flash
RAM

I$

D$

 R. Ernst, TU Braunschweig 29

Memory models

• SRAM timing here included in tpe

– program memory access as instruction fetch time
– data memory access as tload/store

• SDRAM with cache
– thit included in tpe

– tcmiss (cmi): miss time of cache memory cmi

tcom (cmi, cek): communication time for cache line
transfer over ceK

tm (mj) : memory access time for mj

)(),()(jmkicomicmiss mtcecmtcmt +=

 R. Ernst, TU Braunschweig 30

Cache miss overhead

• cache miss overhead
– data cache cmd

– program cache cmp

∑
∈

⋅=
Fb

idmissdcmissddcache
i

bccmtcmFt)()(),(

pek

SDRA
M
SDRAM

cmd cmp

Flash
RAM

∑
∈

⋅=
Fb

ipmisspcmissppcache
i

bccmtcmFt)()(),(

cdmiss(bi): number data cache misses in bi

cpmiss(bi): number program cache misses in bi

miss analysis uses data flow analysis, abstract
interpretation, ...

pei

ID

 R. Ernst, TU Braunschweig 31

 Improved process timing model

• state and „context“ consideration

• modeled as process “mode”

• example: image filter

 R. Ernst, TU Braunschweig 32

Image filter example

• image filter process
– receives packet with header and image data
– performs address match verification
– filters picture data
– forwards filtered picture data to pe2

• execution contexts (picture size): not considered, large picture,
small picture

• execution contexts (address): not considered, address miss,
address match

pe1
headerimage

data
filter algorithm

pe2
header

 R. Ernst, TU Braunschweig 33

[25.0 , 25.0] [25.0 , 25.0]
[0 , 0] [24.4 , 24.4]

[6.2 , 6.2] [6.2 , 6.2]
[0 , 0] [5.9 , 5.9]

[6.2 , 25.0] [6.2 , 25.0]
[0 , 0] [5.9 , 24.4]

[25.0 , 25.0]
[0 , 24.4]

[6.2 , 6.2]
[0 , 5.9]

[6.2 , 25.0]
[0 , 24.4]

Image filter results

Tight send and receive data rate intervals [min, max]
of the filter process (results: SYMTA)

Size not Rec
considered Snd

Large Picture Rec
Snd

Small Picture Rec
Snd

Receive Data [kB] Address not Address Address
Send Data [kB] considered miss match

 R. Ernst, TU Braunschweig 34

[20 , 39] [265 , 572]

[6 , 13] [38 , 64]

[6 , 40] [38 , 681]

[19 , 572]

[5 , 67]

Size not
considered

Large Picture

Small Picture

Timing [ms] Address not Address Address
considered miss match

[5 , 681]

Image filter intervals

Timing intervals [min, max]
for StrongARM architecture incl. caches (results: SYMTA)

 R. Ernst, TU Braunschweig 35

Timing and communication model

• What timing and communication model is appropriate?
– worst case?
– min/max (interval)?
– typical?
– statistics?
⇒ more information needed

 R. Ernst, TU Braunschweig 36

Subsystem & component summary

• analysis of individual process timing as a first step
– used as a basis for activation and resource sharing model
– approach borrowed from RTOS

• include local memories and local communication

 R. Ernst, TU Braunschweig 37

 3 Process execution modeling

• component data required for execution modeling
– process execution time tpe (F, pej)
– communication load r, s
– communication timing tcom (s, cek)
– process activation function
– example: SPI - System Property Intervals

• environment model

 R. Ernst, TU Braunschweig 38

Component parameter model

• example: SPI - System Property Intervals
– coordination language for process system modeling

• abstracts from detailed functionality

• captures essential properties for component data timing,
communication, and activation

• properties represented as intervals

• coordination uses process modes and virtual elements

• originally used to combine models of computation

 R. Ernst, TU Braunschweig 39

SPI - Parameters

• data intervals on
communication channels dC,init, dC

• process execution modes consider
execution context

• activation functions AP1
, AP2

• latency time intervals latP1
, latP2

, latC

latP1
latP2latC

• data rate intervals sC, rC

dC,init, dC
AP1

AP2
LC

P1P1 P2P2CC
sC rC

www.SPI-project.org

process mode
dependent

 R. Ernst, TU Braunschweig 40

• architecture component timing
– process execution timing
– communication timing
– activation -> environment model

IP

M P M P

M

P1

Timing parameters - environment

environment
model

P2

 R. Ernst, TU Braunschweig 41

Environment model

• periodic events

• periodic events with jitter

• events with minimum inter arrival times
– burst events, packets, sporadic events, etc.

tei typically timer released

tptp
te1 te2 te3

pee ttt
ii

=−+1

tp - j/2 tp - j/2
te1 te2 te3

22 1

jtttjt peep ii
+≤−≤−

+

tint

tmin

te1 te2 te3 ten

min1

int1

ttt

ttt

ii

ini

ee

ee

≥−

≥−

+

++
ten+1

 R. Ernst, TU Braunschweig 42

Environment model

• abstract event stream models instead of individual events

• classification of event patterns

 R. Ernst, TU Braunschweig 43

Execution modeling summary

• event model defines the frequency and context of process
activation

• event frequency given as interval, worst case or statistical
value

 R. Ernst, TU Braunschweig 44

Chip Bus

core

RTOS

4 Software architecture

I/O Int Bus-
CTRL

timer
timer

drivers

RTOS-APIs

application

periphery

cache

mem
private

private

private

private

sh
ar

ed
hardware

software
architecture

application

• layered software architecture with API

• consider function call hierarchy

ce1

pe1

 R. Ernst, TU Braunschweig 45

• architecture component timing
– process execution timing
– communication timing
– activation -> environment model
– timing includes all HW & SW

components for process
execution

M P M P

IP M

environment
model

Timing parameters - SW architecture

P1

core

RTOS

I/O Int Bus-
CTRL

timer
timer

drivers

RTOS-APIs

include software
architecture

 R. Ernst, TU Braunschweig 46

include SW architecture in process model

• resolve APIs, drivers, OS calls, memory accesses, etc.

• include multi-hop communication

Release
Airbag

Application example

Actuatorchip-busSensor

RTOS

I/O int bus-
CTRL

timer
timercore

drivers

RTOS-APIs

application

cache

MEM
RTOS

core

drivers

RTOS-APIs

application

I/Ointbus-
CTRL

timer
timer cache

MEM

Crash

PctrlCPsens. PdetcC
C

Pact.C
C

reaction time of airbag after crash ?

tsenstcrash + tcsens + tdetc + tfbus + tcact + tairbag+ tact+ + tctrl tact+ tairbag+

physical delay

tsens +tcrash +

physical delay

 R. Ernst, TU Braunschweig 47

Actuatorchip-busSensor

RTOS

I/O int bus-
CTRL

timer
timercore

drivers

RTOS-APIs

application

cache

MEM
RTOS

core

drivers

RTOS-APIs

application

I/Ointbus-
CTRL

timer
timer

Release
Airbag

Timing refinement

Crash

PctrlCPsens. PdetcC
C

Pact.C
C

Reaction time of airbag after crash ?

 tcom

+ tdrv

=
 tAPI

+ tprocess

+ tAPI

=
 tdrv

+ tcom

+ tdrv

=
 tAPI

+ tprocess

+ tAPI

=
 tdrv

+ tcom

=
tsenstcrash + tcsens + tdetc + tfbus + tcact + tairbag+ tact+ + tctrl tact+ tairbag+

physical delay

tsens +tcrash +

physical delay tcom

+ tdrv

 tAPI

+ tprocess

+ tAPI

 tdrv

+ tcom

+ tdrv

 tAPI

+ tprocess

+ tAPI

 tdrv

+ tcom

texe
tcom

= f (code, core, cache, mem, etc.)
= f (amount of data, width, speed, etc.)

cache

MEM

 R. Ernst, TU Braunschweig 48

5 Modeling shared resources

• resource sharing requires
– resource arbitration - scheduling

• static or dynamic order of processes
• preemptive (interrupt) or non-preemptive

(„run to completion“)
– context switching

• on pe: process context switch
• on ce: packet or connection setup overhead
• in memory: similar to ce

– context switching time tcsw can be determined at design time
– resource arbitration effects are run-time dependent

 R. Ernst, TU Braunschweig 49

• architecture component timing

• subsystem timing
– resource sharing

• process scheduling
• communication scheduling

Timing parameters - resource sharing

IP M

M P M P

environment
model

P1 P2

 R. Ernst, TU Braunschweig 50

Scheduling strategies

• static execution order

• time driven scheduling
– fixed
– dynamic

• priority driven scheduling
– static priority assignment
– dynamic priority assignment

• efficiency depends on environment model (periodic, jitter,
burst)

 R. Ernst, TU Braunschweig 51

Static execution order scheduling

C1

P3

P1 P2

tp

tp: scheduling period

P1

P3

C1

P4

C2

P5P2pe1

pe1 pe2

ce1

pe2

ce1

architecture example

P5

C2

P4
tcsw

 R. Ernst, TU Braunschweig 52

Static execution order scheduling - 2

• execution time: sum of process times + tCSW + tcom

• best suited if timing and control are input data independent

• supports
– interleaved resource utilization
– buffer size optimization
– compiler optimization across processes
– process context exploitation

• application example:
– DSP

P1 P2 P12

merged processes

 R. Ernst, TU Braunschweig 53

Static execution order scheduling - 3

• different event timing models
– periodic input events → periodic output events with jitter
– sporadic events → sporadic output events

• static order problems
– dynamic environments: jitter, bursts
– deadline requirements
– processes/communication with context dependent timing

 R. Ernst, TU Braunschweig 54

Time driven scheduling

• time division multiple access (TDMA)
– periodic assignment of fixed time slots
– applicable to pe or ce

P1 P2 P3 P4 P1 P2 P3 P4

tpTDMA

P1

P1-P4

P2

P4

P3

12

tP1 tP4

13

tpTDMA

process preempted

TDMA example

12

13

tP2

10

tP3

5

10

5

 R. Ernst, TU Braunschweig 55

TDMA

• predictable and independent performance down scaling
allows to merge individual solutions

• time slot size adaptable to different service levels

• supports all input event timing models

• generates output jitter as a result of execution times

• problems
– utilization
– extended deadlines

piiipepTDMA
Pi

cswiipe
iipeTDMA tpePtt

t
tpePt

pePt mod),(
),(

),(+⋅

 −
=

 R. Ernst, TU Braunschweig 56

 7

 9

 3

10

13

12

13

TDMA scheduling example

12P1

P2

P4

P3

10

5

13

P1-P4 P2

tP1,response = 129

12

10

5

13

12

5 5

3

4

9

5

t

10

idle resourcetpTDMA

Scheduling and idle times in TDMA

tCSW omitted
for simplicity

 R. Ernst, TU Braunschweig 57

Dynamic time driven scheduling

• example: Round Robin scheduling
– cyclic process execution
– resource released when task is finished or not activated

tP1,response = 113

12P1

P2

P4

P3

10

5

13

P1-P4

12

10

5

13

12

5

3

4

9

t

tRR(1)

5 5 5

10 10 3

5 45 5 5

tRR(2) tRR(3)

cycle 1 cycle 2 cycle 3

Round Robin example

 R. Ernst, TU Braunschweig 58

Round Robin scheduling

• no idle times - higher efficiency than TDMA

• guaranteed minimum resource assignment per process
– appropriate e.g. for soft deadlines (“best effort”) and QoS

requirements

• supports all input event timing models

• creates output jitter and possibly output bursts

• problems
– process execution interdependency
– timing analysis more difficult than TDMA

 R. Ernst, TU Braunschweig 59

Priority driven scheduling

• Static priority assignment
– model 1

• multi rate periodic input events with jitter and deadlines at
end of period

– typical scheduling approach: Rate-monotonic scheduling
(RMS, priority decreases with period)

– optimal solution for single processors (Liu, Layland)

– model 2
• like model 1 but with process dependencies

– solution for multiprocessors based on RMS: Yen, Wolf

– model 3
• like model 1 but arbitrary deadlines

– timing analysis solution by Lehoczky
– iterative algorithm for priority assignment (Audsley)
– analysis for jitter and bursts (single processor) by Tindell

 R. Ernst, TU Braunschweig 60

Model 3 - arbitrary deadlines

• scheduling with arbitrary deadlines - may create output bursts
for periodic input events

busy period

T1

T2

T2

T2 T2

P3

P1

P2

priority
Static priority scheduling with arbitrary deadlines

 R. Ernst, TU Braunschweig 61

Burst generation

P3

P1

burst

P2

jitter

burstpriority

output eventsinput events

Output bursts in static priority scheduling with arbitrary deadlines
and periodic input events

 R. Ernst, TU Braunschweig 62

Dynamic priority assignment

• priority assignment at run time

• optimal priority assignment: Earliest Deadline First (EDF)

• EDF adapts to input event timing

• problem:
– requires run-time scheduler task →→→→ overhead
– requires deadline determination (e.g. Ziegenbein, ICCAD 2000)
– difficult to analyze - active research topic (e.g. load models)

 R. Ernst, TU Braunschweig 63

Resource sharing - summary

• individual component and process data required

• formal analysis for numerous scheduling strategies, event
models and constraints available
(even for manual calculation)

• results can be used to calculate
– communication and processor load
– timing, e.g. response times, output event models
– memory requirements
– power consumption

 R. Ernst, TU Braunschweig 64

• architecture component timing

• subsystem timing

• system timing
– timing of coupled

subsystems

6 Architecture and global analysis

M P M P

environment
model

P1 P2

SB 1

schedule
SB 2

schedule
SB 1

SB 2

IP M

 R. Ernst, TU Braunschweig 65

CoPro

Multiple Scheduling Strategies

VLIW MEMIPIP IPIPMEM

RISC MEM DSP

SYSTEM BUSSYSTEM BUS

static execution
order scheduling

static priority
schedulingFCFS scheduling

earliest deadline
first scheduling

TDMA scheduling

proprietary
(abstract info)

 R. Ernst, TU Braunschweig 66

CoPro

Corresponding Analysis Techniques

VLIW MEMIPIP IPIPMEM

RISC MEM DSP

SYSTEM BUSSYSTEM BUS

Lee/Messerschmidt
1989

Liu/Layland 1973
Buttazzo 1993

Sha 1994

Kopetz 1993

from IP vendor

 R. Ernst, TU Braunschweig 67

CoPro

Integration ???

VLIW MEMIPIP IPIPMEM

RISC MEM DSP

SYSTEM BUSSYSTEM BUS

Lee/Messerschmidt
1989

Liu/Layland 1973
Buttazzo 1993

Sha 1994

Kopetz 1993

from IP vendor

 R. Ernst, TU Braunschweig 68

Subsystem coupling

• independently scheduled subsystems are coupled by data
flow

⇒ subsystems coupled by event streams

⇒ coupling corresponds to event propagation

SB 1

 scheduling
 SB 1

P2

P1

SB 2

 scheduling
 SB 2

P4

P3

 R. Ernst, TU Braunschweig 69

System timing analysis approaches

• analysis scope extension to several subsystems

• event model generalization for a set of scheduling strategies

• event model adaptation

 R. Ernst, TU Braunschweig 70

Analysis scope extension
• coherent analysis („holistic“ approach)

• example: Tindell 94, Pop/Eles (DATE 2000):
TDMA + static priority

• problem: large number of combinations possible!

P2 P1

T

TTP bus
interface

P3 P4

D

TTP bus
interfacequeue

RTOSRTOS

TTP bus (TDMA)

static priority
process scheduling

static priority
queueing
T: Transmitter
 process

 R. Ernst, TU Braunschweig 71

Parse Search Modify Schedule

• packet processing characteristics
– dynamic load
– interleaved flows of packets
– flow-specific task chains
– event bursts
– variable data sizes

Event model generalization

• Example: Network processor design (Thiele et al.)

 R. Ernst, TU Braunschweig 72

Network process generalized event model
• Arrival/service curves (L. Thiele)

SB 1

 scheduling
 SB 1

P2

P1

• upper bound number of packets in any interval of length 4

• number of packets in time interval [0,4]

• lower bound number of packets in any interval of length 4

arrival

2

4

6

8

14

12

10

4 62

service

2

4

6

8

14

12

10

4 62

αu(∆)

 R. Ernst, TU Braunschweig 73

Load analysis with interval event model

• Load analyis: Addition propagation of computation and
load intervals - min/max algebra (time dependent)

• e.g. buffer size: difference between input load and
processed events HW and SW resources

resource bounds

input stream bounds

remaining resources processed packet streamssource: L. Thiele, ETH Zurich

L. Thiele, ETH Zurich

 R. Ernst, TU Braunschweig 74

Event model adaptation

• idea:
– leverage on the many efficient scheduling strategies available

for different domains
– utilize their corresponding analysis techniques
– adapt their event models for combination
– combine local results to global analysis

SB 1

 scheduling
 SB 1

P2

P1

SB 2

 scheduling
 SB 2

P4

P3

ou
tp

ut
 e

ve
nt

 m
od

el
s

in
pu

t e
ve

nt
 m

od
el

s

 R. Ernst, TU Braunschweig 75

Event model adaptation - 2

• adaptation for compatible input and output event models
– simple mathematical transformation to adapt analysis

Event Model InterFace (EMIF)
– no added function, no run-time effect

• adaptation for non-compatible input and output event models
– insert Event Adaptation Function (EAF) to transform models
– EAF describes interface buffer function

⇒ shows that buffer is required to couple subsystems

 R. Ernst, TU Braunschweig 76

periodic with jitter
J J J

TT
periodic with burst

Tb

t

b

t

periodic
TT

sporadic
x≥≥≥≥t x≥≥≥≥t x≥≥≥≥t

Event Model Interface Classification

jitter = 0burst length (b) = 1

t = T - J

t = T

t = t

lossless EMIF lossy EMIF

T=T, t=T, b=1 T=T, J=0

 R. Ernst, TU Braunschweig 77

Existing EMIFs and EAFs
Lossless EMIF

Lossy EMIF

Sporadic

Periodic with Burst Periodic with Jitter

Periodic
EAF buffer
required

 R. Ernst, TU Braunschweig 78

BUS

CPU2CPU1

CPU4CPU3

P1 P2

C2

C1

P3 P4

P5 P6

P7 P8

burst

sporadic

periodic

EMIF

EAF

EMIF

EAF

EMIF

EAF

EMIF

EAF

lossless

lossy

periodic

burst burst

burst

Identification of complex interdependencies

X-talk

 R. Ernst, TU Braunschweig 79

Finally - timing and communication model

• What timing and communication model is appropriate?
– worst case?
– min/max (interval)?
– typical?
– statistics?

 R. Ernst, TU Braunschweig 80

Timing and communication model - 2

• statistical or „typical“ timing and communication load
– summarizes context dependent timing and communication

variations
• typical or average communication load and time can

simply be accumulated
• replaces discrete simulation by statistical analysis

– challenges:
• (buffer) memory overflow not fully covered
• communication link overload not fully covered
• critical deadlines not covered
⇒ not safe

 R. Ernst, TU Braunschweig 81

Timing and communication model - 3

• worst case timing and communication load
– conservative
– risk of overdesign

• precise worst case required
• combination with context dependent execution useful

• but: worst case timing alone is not safe, too!

 R. Ernst, TU Braunschweig 82

Worst-case-timing-only problems

• bus load calculation
⇒ minimum execution time defines

maximum bus load

• multiprocessor scheduling anomaly
• fast process blocks critical process

⇒ only interval models for communication and time are safe

RISCMEM

SYSTEM BUSSYSTEM BUS

 R. Ernst, TU Braunschweig 83

 7 Conclusions

• MPSoC platforms show complex run-time behavior due to
optimized resource sharing

• implementation creates dependencies which are not reflected
in the system function

• influence on timing and memory usage may compromize
correct system behavior

• simulation for performance analysis is increasingly inadequate

• proposed systematic approach to MPSoC platform analysis
exploiting knowledge from RTOS

• reviewed different techniques to investigate subsystem
compositions

• techniques can also be used for estimation

 R. Ernst, TU Braunschweig 84

Literature

• see: www.spi-project.org

 R. Ernst, TU Braunschweig 85

Acknowledgement

• The following persons contributed in developing these
slides

– Bettina Boettger
– Kai Richter
– Dirk Ziegenbein

