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Outline

e Mapping Signal Processing Applications to
Multiprocessor Architectures
+ Application Example
+ From Task-specific Processing To Multiprocessing Platforms
» FFT algorithms: HIPAR-DSP
 Video compression: Macroblock Processor
» Stream processing: RISC Core

e Reconfigurable Computing
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Introduction

e Problems related to image sequence processing
+ Real-time processing
» Continuous sequence of data
+ Signal processing requirements
» Computational rate, data access, storage requirements
+ Implementation requirements
 Size and power consumption
+ General-purpose processors do not offer needed performance
e Solution

+ Specialized signal processing architectures
+ Multiprocessor on chip
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High Performance Signal Processing

e Concurrent processing of several operations necessary

e Parallelism on different levels
+ Independent processing of data blocks
= Data-level concurrency
+ Parallel execution of independent instructions
=Instruction-level concurrency
+ Independent parts of processing scheme (tasks)
=Task-level concurrency
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High Performance Signal Processing Example

e Onboard Radar Processor (Synthetic Aperture Radar)
e Compression of data rate
e Modulation for transmission

SAR Image . Encoded QFDM
Radar Sequence CompI’ESSIon Stream ere|eSS
Processing Communication
Trans-
Radar mission
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Multiprocessor Approach

e Application driven derivation of task-specific processors
+ [solation of similar data and processing types in application
+ Mapping onto independent, programmable processors
+ Optimize each processor in terms of
« Implemented type of parallel processing
* Instruction set
« Load-/Store capabilities
=> Utilization of parallelization resources on data level and instruction level

e Multiprocessor integration with task-specific processors
on a single chip
=> Concurrent processing and data access on task level
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Derivation of Task-specific Processors

e SAR application
+ Algorithm for image generation

e Modulation for transmission
+ Multicarrier technique

e Video compression
+ MPEG algorithm
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Synthetic Aperture Radar

e Emitted impulse is reflected by objects in footprint/

e Echo is recorded or B |
processed on-board -~
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azimuth

range footprint
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SAR Processing

SAR
Rawdata
FFT
o ) Rangecompression
e SAR processing in frequency domain FET
e Rangecompression: motion compensation
e Azimuthprocessing: geometric correction i
e 6 Fast Fourier Transformations necessary 2D-FFT
Azimuthprocessing
2D-IFFT
Image

data
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OFDM Modulation

e Orthogonal Frequency Multiplexing
+ Multicarrier transmission technique for wireless data communication
+ Implemented in standards: ADSL, ETSI, DAB, DVB-T, W-LAN
+ Orthogonal modulated signals on multiple modulated carriers
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OFDM-System

Modulationsymbols S, ;

R =Sy Hie + Ny

e Characteristics >
=>High FFT performance required
= Flexible adaptation to channel dependent guard intervalls

> FFT is essential operation in SAR- and OFDM-Applications
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Butterfly FFT
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e Parallel butterfly calculation
+ Data Level Concurrency offers high potential for performance gain
= SIMD Controlling to maximize concurrency on limited silicon area
+ Parallelization requires data exchange between processing units (PU)
= Matrix Memory: Shared memory with parallel data access
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Matrix Memory Access
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@ Concurrent data access of processing units (PU) to Matrix Memory

D Typical access patterns for filter / transform algorithms:
Matrices with/without distances between memory elements

= Conflicts caused by parallel access can be solved / avoided
13
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Matrix Memory Architecture

e Appropriate distribution of 2x2 data to 3x3 RAM modules
+ Conflict-free access on matrices with distances 0 and 2x
+ Only 15-20% area overhead for address calculation and shuffle net

h, v, hd, vd % i % i f i ADDRESS-CALCULATIOI
ADDRESS MEMORY MODULE
:D b 2
DATA

1 SHUFFLE NETWORK I

RN 1
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e Enhanced data parallelism (SIMD)
¢ Additional subword parallelism

e Moderate instruction parallelism
¢ VLIW with 3 operations

e Matrix Memory for data exchange
¢ Concurrent high bandwidth data access
+ Programmable in high-level language

HiPAR-DSP Architecture Approach

+ Single unit controls scalable number of 4 / 16 data paths

MPSOC
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Architecture: HIPAR-DSP
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Architecture: HIPAR-DSP
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Architecture: HIPAR-DSP
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Video Compression Based on MPEG

e Characteristics
+ Motion compensated prediction
+ DCT on prediction error
+ Variable length code words

e High performance requirements
+ Motion estimation
 Block Matching
+ Hardware extensions for higher throughput
» Specialized instructions in VLIW processor

19
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Motion Estimation : Block Matching (BM)

Search area Search area (N+2w)?2

Reference
Frame i-1 ‘ block N2
Frame i

e Comparison of NxN reference blocks in MxM search window
e Distance measure

N-1N-1
D(mn)=> > |x(i, j)—y(i+m,j+n)
i=0 j=0
e Search for best candidate block in search window 20
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BM: Software-Implementation with Sum of
Absolute Differences Instruction

e Vector instruction: Sum-of-absolute differences V_SAD
e S=_2(|OpA-OpB|)
e Example: 32-Bit

OpB | 8bit | 8bit [ 8bit | 8bit |
/N /NS N/
OpA-OpB o - - _
v v v v
| obit | ebit [ obit [ obit |
v v v v
2

wesoc

21

Motion Estimation for MPEG 4

e Increase of compression rate
¢ Sub-pel accuracy
+ MPEG 4: up to 1/8 pel resolution
+ Interpolation filter necessary

wesoc R
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BM: Sub-Pel Interpolation

¢ 4 Cases: FF/FH/HF/HH Case H
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Software Interpolation with
Average Instruction

Vector average instruction: V_AVGRC

p = (OpA+OpB+rndctrl) shr 1

4 Parallel interpolations / clock-cycle (32-Bit)
Example: 32-Bit

OpA
OpB
v N Vo7 N ¥y N ¥ mdetr

AN ; + ;

v ¥ v v
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Macroblock Processor (MP)

e VLIW core: 2-issue, Vector Unit

64-bit (splittable)
e Vector unit (64 bit) Register

Instruction RIS »b\_’
> Decoder > 1 ALU
—>
== Functions

Scalar unit (32 bit)

. (64 x
e Local memories: 64 Bit)

Instruction (8kb)
Data (2kb)

rea
e Peak performance: i Special

1.7 GOPS @ 108 MHz Ins;:;c;gn Functions

(32 x
- Data, instruction level 328i) »
parallelism

- Specialized instructions
- Parallel data transfer
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Specialized Instructions for Macroblock
Processing

Quad 16 - 32-Bit MAC with saturation (128-Bit result)
e Shift with round to 0 / « unsigned, signed
=>» Transform, filter (QMC, deblocking)

® Average value with rounding control
=>» Sub-pel motion compensation

® Addition of absolute value (ABSADD)

® Controlled Addition/Subtraction (ADDSUB)
=>Dequantization

® Permute instruction (perfect data shuffle with 2 regs)
=>Motion compensation, deblocking

® Branch on vector status registers
=>Deblocking mode selection

26
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Bitstream Processing

e Application
+ Audio/Video stream generation and separation

e Characteristics in MPEG encoding
+ Multiplexing of different parts of bitstream
+ Run-Length coding of DCT coefficients
+ Variable length coding of coded DCT coefficients (using Huffman table)

27
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Variable Length Coding

e Short codewords for frequent occurring symbols
e Long codewords for rare occurring symbols

Codewords | Symbols

0 SO
10 S1
110 S2
111 S3

28

wsoc N

14



Variable Length Decoding

e Parsing bitstream
+ Variable number of bits form a codeword
+ Extraction of codewords
+ Replacing codeword with symbol

= Large amount of bit oriented operations

e Problem:

+ Standard operations use byte/word widths (8/16 bits)
e Solution:

+ Implementation of specialized bit-operations

29
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Instruction-Set Extensions

= Specialized instructions (1 cycle) for frequently used functions

e ShowBits e GetBits
processed not processed processed not processed
[ 1T | [ 1T |
100110 0111 100110 0111
current bit current bit current bit
(before & after) (before) (after)

R2

30
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RISC Core Architecture Approach

e Scalar operation flow

= Usage of standard RISC -

with concurrent access on
instructions and data

e Enhancements to
instruction set

=>» Inclusion of bit oriented
operations

MPSOC

64 Bit

Multiprocessing

e Multiprocessing application featuring several tasks
+ Preprocessing (e.g., filtering)
+ Image/Video compression
¢ Channel coding (e.g., OFDM modulation)

e Implementation goals
+ Meeting real-time requirements for entire application
+ Compact realization / low power constraints

In/Out 4GB

Interface
RAM

wesoc NN
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HiBRID-SoC Multiprocessor Approach

e Integration of 3 processor cores on a single chip
+ HiPAR-16 Core
* SAR processing
* Filter and transform operations (e.g., FFT)
* Modulation (e.g., OFDM)
+ Macroblock Processor

» VLIW architecture adapted to video coding applications (MPEG-4
Advanced Simple Profile featuring Global Motion Compensation)

+ RISC-Core
 Controlling tasks
* VLC, VLD
« Bitstream processing

33

HiPAR-16

HiBRID-SoC Multiprocessor

SDRAM

Core

il

Interface

Host
Interface °

64 Bit AMBA
AHB .
V¥ System Bus

Communication Platform

Caches and DMA control allow
autonomous data transfers
concurrently to processing

External communication via
SDRAM interface

+ 64-Bit AMBA AHB system bus

2 Flexible use of DSPs
as building blocks

Internal communication of cores
via Dual-Port-RAM

=2 Low controlling overhead

34
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Outline

e Mapping Signal Processing Applications to
Multiprocessor Architectures
+ Application Example
+ From Task-specific Processing To Multiprocessing Platforms
e FFT algorithms: HIPAR-DSP
* Video compression: Macroblock Processor
» Stream processing: RISC Core

e Reconfigurable Computing
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Reconfigurable Computing (RC)

e Goal
+ Adaptation of hardware configuration to algorithms at run time

+ Direct mapping onto suitable processing elements allows optimum
computing density (power, area, performance)

¢ Closing the gap between HW and SW design

+ Capability of in-field upgrades

+ Time-to-market shortening m===) reduces product life-cycle cost
e Reconfigurable computing system

+ Reconfigurable basic cells, reconfigurable network

+ Combination of reconfigurable resources, processor cores and
dedicated arithmetic HW as R-SoC (reconfigurable SoC) to higher
performance on data-intensive tasks

36
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Efficiency of Reconfigurable Computing

Algorithm UP, DSP ASIC RC

R oo
:> 65%-70%
d

e Future of general purpose and application-specific processors
+ Increasing clock speed, gate number and performance
+ Decreasing efficient use of transistors, e.g. for parallel computing applications

e High computational and power efficiency
+ Much work accomplished within a given timeframe against the amount of
power consumed
+ Measurement not in terms of MHz, MIPS or number of gates but in efficient
use of transistors .
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Current Virtex-ll FPGA Platform

e UP
+ PowerPC
D/l — Caches
+ Controllers
+ Interfaces
e DSP
+ Distributed RAM (Filter coefficients)

+ 18x18 Multipliers
+ 600 billion MACs/second

e Connectivity

¢ 3.125 Ghps serial
+ 100+ Gb Bandwidth

*

38
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DSP vs. Xilinx FPGA benchmark
Industry‘s Xilinx Xilinx
Function fastest DSP Virtex-E -8 Virtex-lI
Processor Core
8x8 Multiply-and- 8.8 billion 128 billion 600 billion
Accumulate MACs/s MACs/s MACs/s
(MAC)
FIR filter 256-tap | 17 Mega samples 160 MSPS 180 MSPS
linear phase per second 160 MHz 180 MHz
16-bit data/coeff. (MSPS)
1.1 GHz
FFT 1024 point 7.7 ysec 41 psec 1 psec
16-bit data 800 MHz 100 MHz 140 MHz

MPSOC

e Coarse-grained components
+ General Purpose Processor Core
e Medium-grained components

+ DSP functionality
(dedicated hardware: ALU, MAC, MULT...)

+ Synchronous Block-RAM
+ Intracomponent connection network
e Fine-grained components

+ Reconfigurable processing elements
+ Reconfigurable interconnection network

Different granularities for future RC

40
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Conclusion

e Implementation efficiency:
Adaptation of processor architectures to processing schemes

e High performance requirements:
Exploitation of all existing parallelization levels

e System implementations:
Several task specific processors on single chip together with
communication network

e Outlook:
Programmable processors vs. reconfigurable computing still
open question

41
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