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Preview
� Embedded System Architecture =

• Hardware + Software + Communication
+Control + other stuff

• Each architecture is a view into
the system

• Overlapping views have some degree
of compatibility

� Make it easier for system to meet requirements
• Concentrate on essential system characteristics
• Help mere mortals see the big picture(s)
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Myth: “Small” Embedded Systems Are Trivial
� Only “toy” versions are trivial; real world is complex
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What’s Inside an Embedded “System”?
� “Features”

• High-level system functionality
• Mostly mapped to software…

� Software
• Computation

– Control loops
– Finite state machines

• Communication
– Intra-node communication via calls
– Inter-node communication via messages

� Hardware
• Nodes + Networks + Interfaces

� Must meet non-functional requirements
(real-time, ’ilities including profitability)
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What’s an Architecture?
� Loosely: an architecture is how all the pieces fit together

� Architecture definitions:
• System architecture:

The structure – in terms of components, connections, and 
constraints – of a product, process, or element.   [Rechtin96]

• Software architecture:
The structure or structures of the system, which comprise 
components, their externally-visible behavior, and the 
relationships among them [Bass97]

� Informally:  Boxes and Arrows
• Boxes:  objects/subsystems/…
• Arrows: interfaces
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My Definition Of An Architecture
� An architecture is an organized collection of components 

that describes:
• both behaviors and interactions

» (boxes & arrows)

• with respect to a specific abstraction approach and
» (rule for when to create a set of subsystem boxes)

• subject to a set of goals+constraints
» (rules to evaluate how good the architecture is)

• An implementation uses a specific mechanism to create a behavior 
and and interface for a component  (it’s an instantiation of an 
architecture)

� One person’s component is another person’s system
• An implementation can have multiple components, each with its 

own architecture
• This definition recurses
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Interfaces / Specifications
� Functional properties

• What exactly does each system module/subsystem do?
• (But, not exactly how it does it – thus, implementation is encapsulated)

� Control properties
• Which signal (message, variable, physical pin) does what?

� Temporal properties
• Timing constraints on interface, including ordering restrictions

� Data properties
• What do the data values look like?
• Often in the form of a message dictionary, with map of data fields for each 

message

� The big question – how do you know where to insert the 
interfaces?
• How do you know what decomposition steps to perform?



5

°9°9°9°9

Embedded System Architectures
� Primary Architectures (almost always used)

• Hardware architecture (CPU, memory, network, I/O)
• Software architecture (software components, data repositories,

message dictionary, external interfaces)
• Communication architecture (message flows, message formats)
• Control architecture (hierarchy of control algorithms; 

emergent system behavior)

� Secondary Architectures (used when needed)
• Human interface
• Component coordination & timing framework
• Safety/security
• Validation/verification/testing
• Maintenance/upgrade
• Fault management/graceful degradation
• …
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System Architecture/Partitioning
� Partition to meet constraints of:

• All necessary functionality provided
• Computation power per node
• Memory space per node
• Bandwidth/real-time abilities of network
• Hardware/Software tradeoffs can help with optimization
• Legacy issues

� Traditional approach: hardware first
• Gradually moving to HW/SW co-specification/co-design

� Alternatives are possible
• Functionality first / product family-based design
• At each level of system, use an “appropriate” decomposition 

strategy
• Create architectural views, then perform fusion/allocation
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Architectural Patterns
� General known approaches can apply to new systems

• Sometimes presented as “pattern catalogs”
• Gives guidance to reduce need for create-from-scratch approaches

� Following slides are some examples
• A real catalog would have detailed textual descriptions too
• This is a very small sampling of patterns; there are many ways to 

do things!
– The idea is to demonstrate the different flavors of architectural views
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Hardware Patterns
� Centralized System

• Abstraction principle: all in one big pile
• Single CPU for all sensors/actuators

• Pro: efficient use of CPU & Memory
• Con: difficult to expand

A
S
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A
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A
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Hardware Patterns
� Ad Hoc

• Abstraction principle: paste extra boxes on as system evolves

• Pro: easy way to tack on patches in evolving system
• Con: inefficient mapping of most architectural approaches
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Hardware Patterns
� Hierarchical

• Abstraction principle: “big” nodes at top; “little” nodes & most
I/O at bottom

• Pro: easy mapping to hierarchical control
• Con: top/root node forms bottleneck for communications & 

reliability
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Hardware Patterns
� Federated/Decentralized Networked System

• Abstraction principle: multiple boxes all on one network as peers
• Several sensors/actuators/servo loops per CPU

– Often sensor/actuator/CPU pairing done by 3-D geometric regions
– Design approach is often add CPUs as you need more I/O connections

• Pro: benefits of being distributed with lower CPU packaging costs
• Con: can have poor mapping to control architecture

CPU

A S A S

CPU
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CPU
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A

A
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Hardware Patterns
� Highly Distributed Networked System

• Abstraction principle:
One sensor, actuator, or servo pair per CPU, on a network

• Bus interconnect
– Bus hierarchy may be needed to overcome bandwidth limits

• Pro: doesn’t predispose system to any other architectures
– Good for an idealized MEMS system

• Con: bus can be a bottleneck

CPU CPU CPU

A S A S

CPU
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CPU
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CPU
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Software Patterns
� Ad Hoc   (with “object-oriented” meatballs)
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Software Patterns
� Client/Server

• Abstraction principle:
All data at a server; replicate clients to interface elsewhere

• Pro:  keeps clients small/cheap
• Con: server is performance & reliability bottleneck

SERVER

CLIENT CLIENT CLIENT

DATA
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Software Patterns
� Object oriented / Federated

• Abstraction principle: partition by data types, hide data behind
methods

– Note: flow of control is completely obscured

• Pro: helps with multi-vendor/mult-subsystem integration
(compatible with CORBA)

• Con: can have high overhead to access data

METHODS

DATA

OBJECT "BUS"

METHODS

DATA

METHODS

DATA
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Software Patterns
� Table Driven, phased, flow of control

• Abstraction principle: Partition by phases of execution, use tables 
to specify detailed behavior for general software modules

– This is actually a combination of “control flow” and “table driven” patterns

• Pro: frequently used for customizable system
• Con: flow-of-control organization is harder to get right than object 

oriented for many systems

PHASE 1

TABLE 1

PHASE 2

TABLE 2

INIT FINISH
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Communication Patterns
� Master/Slave

• Abstraction principle: master node explicitly coordinates all traffic

• Pro: Very simple to implement and get right
• Con: Coordination consumes bandwidth;

Master is potential single point of failure

SLAVE

MASTER
POLL

RESPONSE

SLAVE

POLLRESPONSE

. . .

ROUND
ROBIN

POLLING
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Communication Patterns
� Global priority

• Abstraction principle: highest priority message delivered first
– Does NOT require a physical node to act as a queue – fully distributed 

implementations are commonly used!

• Pro: priority helps meet deadlines
• Con: priority interferes with fairness

NODE

NODE

NODE

NODE

PRIORITY
QUEUE
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Control Patterns
� Intelligent Hierarchical Control (IHC)

• Abstraction principle: nest control loops based on 
sensors/actuators

– Use sub-levels as logical sensors & actuators to close a control loop
– Each level may itself have sub-levels

CONTROL

A S A S

CONTROL

S A S

CONTROL
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A

A

A S
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CONTROL

S
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Control Patterns
� Federated Agents/“Blackboard”

• Abstraction principle: each object has a control agent; agents 
monitor and transmit global state information for coordination

AGENT

A S A S

AGENT
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AGENT

S A

A

A
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"BLACKBOARD"
SHARED GLOBAL

STATE INFORMATION
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Human Interface Patterns
� State machine model

• E.g., digital watch with 4 buttons
• Maps well onto statechart and other engineering design tools
• Person has to keep track of mode information

– This is a classic usability problem

� Menu-driven interface
• “User friendly”
• Can be frustrating for experts

� Command line interface
• “User hostile”
• Can be very efficient for expert users
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Component Coordination Framework
� Direct integration

• E.g., direct procedure calls & messages   (e.g., sockets)
• High efficiency; high flexibility in detailed implementation
• Requires knowledge of all the details to integrate a component

� “Basic” middleware
• E.g., CORBA, D-COM, Jini;  perhaps RPC/RMI; but few services
• Provides interface abstraction; hides differences in implementation

– May facilitate use of COTS software components
• Centralized point for adding fault tolerance, monitoring
• Incurs various overheads, especially execution speed & memory size

� Advanced middleware
• E.g., naming & discovery services added to middleware
• Simplifies dynamic reconfiguration, collaboration among designs
• Adds more complexity & overhead
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Safety Patterns
� Automatic safety net approach

• Provide a distinct safety system that can ensure safety
– E.g., emergency brake, or other emergency stop system

• Keep safety system simple in content and interface

� Rely on human operator to keep system safe
• Simple, easy way to attempt to evade liability
• Humans can be counted upon to make mistakes

– But, operators are great scapegoats for the accident investigation

� Field data collection + engineering feedback
• Partially shows up in technical system as black box/flight recorder

� There are non-architectural approaches as well
• E.g., formal verification; extensive field trials

• The architected techniques result in a “safety box” that somehow gets mapped 
into other architectural views
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Security Patterns
� “Air Gap” security

• If there is no network connection, it is difficult to mount a network-based attack
• Increasingly unrealistic for most systems

� Firewall security
• Create a constrained interface
• Is proven somewhat effective, but difficult to ensure there are no holes at all
• Constrains inter-system communication, coordination & optimization

� Encrypted communication/authentication
• All interfaces have encryption/authentication
• For efficiency, often combined with firewall pattern (encryption only outside 

firewall trusted zones)

� Non-architectural approaches include: 
• Attempted security through obscurity
• Attempted security through criminalizing reverse engineering
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Validation/Verification/Certification Patterns
� Segregate critical subsystems and recertify only those

• This is the current “best” approach for mixed critical/non-critical systems

� Include access points for testing
• Hardware testing (e.g., boundary scan)
• Create formalized APIs and components (e.g., use certified RTOS)

– But it is tricky to make an API truly bulletproof

� Non-architectural approaches:
• Recertify everything after every change

• Use design rules that avoid need to certify
– In some cases this really works

(e.g., keep below certain wattage for RF transmissions)
– “Certification” in that case is being sure you followed the design rules
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Maintenance/Upgrade Patterns
� Software upgrade capability

• Use flash memory to deliver fixes
– Cost vs. flexibility tradeoff
– Upgrades can occur between IC manufacturing and product assembly

• Causes architectural ripples to hardware, connectivity, etc.

� Mechanically partitioned units (e.g., socketed chips)
• Partition design into replaceable units

– Replace subsystems to accomplish upgrades/repairs
• Might include replacing hardware components as a software 

upgrade maintenance operation
– Can be difficult to accomplish inexpensively if each chip is highly 

integrated (and therefore expensive)

� Non-architectural approaches include:
• Make a product disposable (no maintenance/upgrade possible)
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Fault Tolerance/Degradation Patterns
� Replication with failover

• Every critical function has at least one backup
– Active replication with hot standby failover
– Passive replication with cold standby + transaction logs for catching up
– Spare resource pool with reboot after reconfiguration

• Works well if failures are random (not all software defects are random!)
• Aggressive replication is expensive

� Function/load shedding as replicants fail
• Architecturally, this shows up as a configuration or workload manager
• Spread workload over replicated units

– As units fail, capacity is reduced, but each unit can operate standalone if needed
• Have configuration plans that map functions to units

– As units fail, different mappings are used to keep key functions running
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Multi-View Architectural Fusion
� Every real system has several architectural views

• Differing views have to be combined to form “The Architecture”
• This process is a generalization of allocating software modules to 

hardware, but can have much higher dimensionality

� Most times you can use any architectural combination
• But, you/your design may suffer significantly if you pick poorly
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Observations – Isomorphism
� Some patterns are 

isomorphic across 
different architectural 
perspectives
• Often, they are used as a set
• But, they don’t have to be 

used together
• And, more importantly, just 

because they are isomorphic 
does not mean they aren’t 
all there as distinct 
concepts!
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A

A
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SHARED GLOBAL
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Federated Hardware

Object Oriented Software

Federated Control

°34°34°34°34

Other Observations
� Multiple architectural approaches can be 

combined/nested
• e.g., Client Server plus object bus, 

PLUS some “objects” are implemented as distributed systems

� There are no exactly correct answers
• This area is more art than science
• Each architectural pattern tends to have tradeoffs

– Architectural selections are not entirely independent
– Tradeoffs can occur due to combinations of patterns

� Businesses are systems too
• And they have multiple architectural views
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Non-Architectural Approaches
� Where do all those “non-architectural” approaches fit?

• Typically they are things that don’t trace to specific boxes in any architecture
• Sometimes they are omissions

– e.g., “we don’t have a security strategy”
• Sometimes they trace to non-engineering business architecture boxes

– e.g., information access architecture uses an NDA in support of “security through 
obscurity”

• Sometimes they trace to a business model
– e.g., “we want consumers to upgrade by throwing the old one away”

» Thus, make products non-repairable, but cheaper than repairable ones
» Perhaps it consumers encounter a bug, tell them their unit has worn out and they need to 

buy another one to replace it (one that will have newer software…)

� Most “systems” are really “systems of systems”
• Some high level functions get diffused into emergent properties within 

components (this is a traceability problem)
• Some high level constraints get converted into boxes within components
• …
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How To Create A Functional Architecture
Note: this is a combined view, 1-D approach to architecture
� Functional Architecture = subsystems created by splitting 

“functions” 
• Classical large system development technique
• Seldom optimal, but most engineers can be trained to think this way
• Historically the architecture of choice for weapon systems
• Single, combined view of hardware + software + control, with implied 

federated communication architecture  (1 “box” = 1 “subsystem”)

� Architectural methodology (a guide to “Functional Boxology”)
• List primary mission goals

– Associate secondary mission goals
• List verbs that correspond to “marketing requirements”

– One verb per requirement
– Be sure that verbs are orthogonal

• Architectural decomposition is one box per verb
– Recurse as necessary
– Stop recursing when each box is a design team of 4 people or fewer
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Elevator Functional Architecture

Primary
Mission

Secondary
Missions

Provide safe, timely, comfortable
passage between floors.

Deliver
Passengers

Quickly

Inform
Users
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Building
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Protect
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Support
Customized

Behavior

Example Functional Architecture for Elevator
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INFORM USERS
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RoSES = Robust Self-configuring Embedded Systems
� Research Context:

fine grain distributed embedded systems
� Research vision:

Product families + auto-reconfiguration =
• Operation with failed components
• Automatic integration of inexact spares
• Automatic integration of upgrades
• Fine-grain product family capability

� Potential Impact:
• Logical component interfaces + config mgr.
• Fine-grain software component support
• Architectures that are naturally resilient

� What we’re really learning is where all 
the difficult research issues are!

System Variables/Network

Baseline
Sensor SW

Functionality

Dynamic Interface
to Object Bus

Basic S/A
Device

Smart Sensors/Actuators

Local
CPU &

Memory

Adapter Repository
CUSTOMIZATION MANAGER

SW
Adapter for
High Level

Logical
Interface

SW
Compute/
Control

Functions

°44°44°44°44

Some Specification & Evaluation Research Issues
• Allocating software to available components

– Problem: given fixed resources, how to you maximize utility?
– What baseline set of components gives most reconfiguration flexibility?

• System specification
– Product family architecture specification
– Specification of utility for different features & feature sets
– When/how to determine HW/SW/Mechanical/Business tradeoffs

• Evaluation
– Is a system really “working” when it is partially disabled?
– Safety/certification of component-based systems with many failure modes

• Design
– Many real embedded systems have global modes that break design methods

» Do you do a distinct system design for each mode and merge?
– Many real systems are hybrid discrete+continuous

• Implementation
– Software runtime infrastructure  (Jini was a poor fit to an embedded network)
– Real time scheduling for distributed networked system
– Security of embedded+enterprise combined system
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Big Open Issues
� How do we know which architecture to use and when?

• Can we evaluate architectures for properties such as graceful 
degradation in the abstract?

• But, at least now we know that this is a decision to consider –
there is more than just one possibility

� Can system architects be trained, or must they be born?
• “Most really good architectures come from a single architect”
• If functional architecture isn’t the best answer, what is?

– Or is good enough really good enough?
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Review
� System Architecture via patterns for multiple system views

• Multiple views for most systems are essential
– Hardware + Software + Communication + Control + others

• There is no “free lunch” – you probably have to choose between
– Be constrained to a 1-D/low-D decomposition (e.g., functional architecture)

vs.
– Deal with allocation incompatibilities when fusing a many-D decomposition

• Multiple architectures mean many different tradeoffs
– System-level tradeoffs between mechanical, HW, SW, and other implementation 

methods are common
– Existence of non-architectural options mean some tradeoffs happen between 

technical and business/non-technical system layers!

� Functional architecture: yes, there is a multi-view recipe!
• But it usually produces mediocre system architectures
• Doing better is a deep research topic


