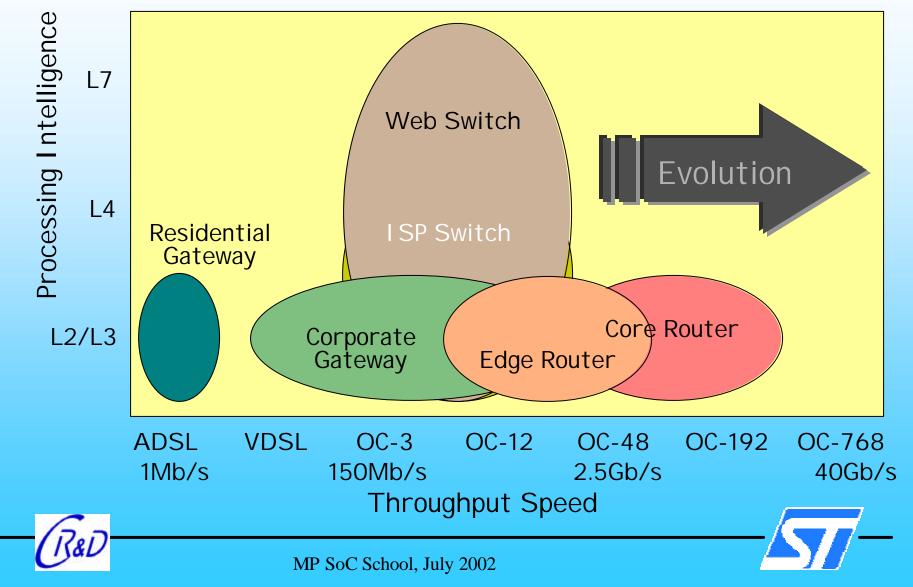
Trends and Requirements for Network Processor SoC tools MP SoC School, July 2002

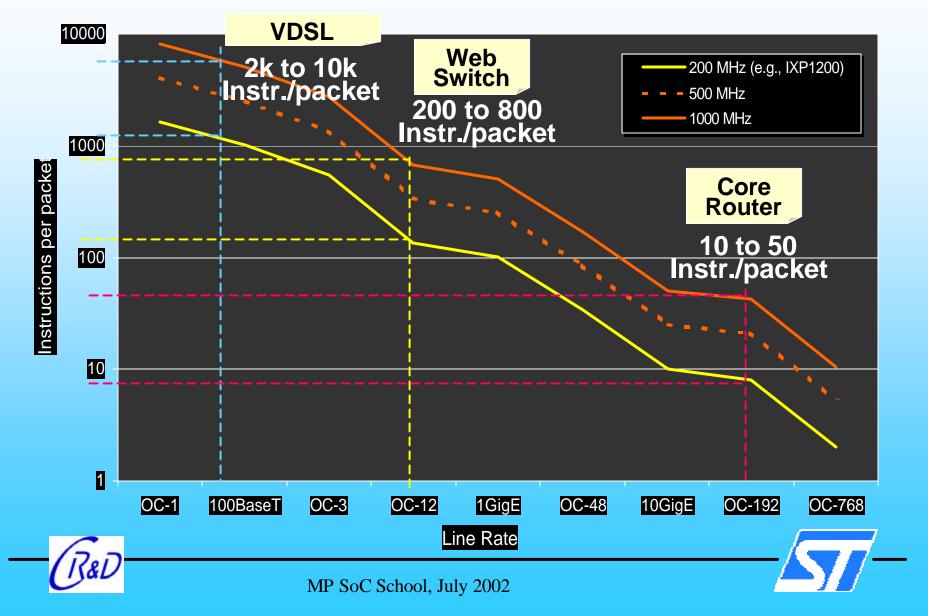
Pierre Paulin, Director SoC Platform Automation Technologies STMicroelectronics, Ottawa, Canada

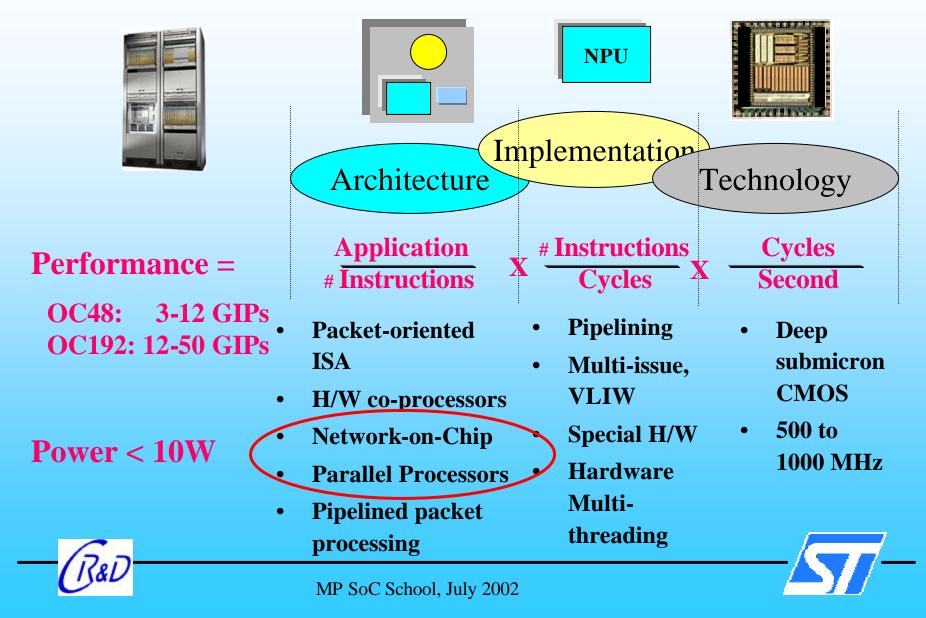
Outline

- Network Processors
 - ≫Why?
 - ➤High performance: How?
 - >NPU tools survey
- □ StepNPTM Research NPU Platform
 - Parallel processor architecture
 - Router applications
 - SoC tools and methods
- R&D Needs Outlook
 - >>Which platform, which SoC tools?

Why are NPU's Interesting?


- Key component of emerging intelligent high-bandwidth optical network
- Commercial perspectives
- First real industrial parallel processing application


- Cost-effective & useable parallelism
- Perfect driver for next generation SoC tools
 - > Embedded software & System-level design tools
 - > Multi-processor tools


Router/Switch Space (Today)

NPU Instructions / Packet

Enabling High Performance

NPU Tools Survey

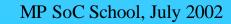
Common NPUs at 2.5 Gb/s and 10 Gb/s (Info from company public web sites, updated Feb. 2002)

<u>NPU</u> (2.5 Gb)	HLL	<u>Debug</u>	<u>ISS</u>	<u>System</u> <u>Model</u>	<u>Lib</u>	<u>Other</u>
IBM PowerNP	C: ppc only VxWorks	sim,oce Fr inject	Yes	Yes Tcl/Tk I/F	Yes	Perf. analysis Ref. Board
Agere Payload+	FPL, C VxWorks	Yes IDE	Yes	Throughput modelling	Yes	Packet gen. Ref. Board
Motorola C-5	GCC VxWorks	GDB	Yes	Perf. Model (250X HDL)	C-ware	Perf. analysis Packet gen.
Intel IXP1200	ueC, symb. macro-asm NPOS, OS9	Cycle- acc dbg IDE	Yes	Cycle-acc. FL-API	Teja uWare ACE	Perf. analysis Packet gen.
Conexant Mxt4400	GCC (2001?)	Yes	Yes	Cycle-acc.	Yes	Perf. analysis Packet gen.
Sitera IQ2000		GDB Sim, jtag oce	Yes	Functional, HDL cosim, Tcl/Tk I/F	Yes	Perf. analysis Packet gen. Ref. board
ReD MP SoC School, July 2002						

<u>NPU</u> (10 Gb)	HLL	<u>Debug</u>	ISS	<u>System</u> <u>Model</u>	Lib	<u>Other</u>
Lexra Netvortex	CC VRTX OS	m-p/m-thr IDE	Yes	Cycle-based		OCE (JTAG)
AMCC / MMC nP7510	m-p CC h/w OS VxWorks	XRay IDE: WindRiver	Yes		Yes	OCE (JTAG) Ref board
Clear Speed	m-p CC	m-p dbug IDE	Yes	Yes	Yes	Perf. analysis
Si Access	iAtom CC	m-p/m-thr IDE	Yes (C++)	Cycle-based (C++), API	Yes	Perf. analysis Packet gen.
Cisco Toaster	CC (CCC) Cisco IOS	Yes	Yes	Cycle-based	Yes	
Agere Payload+	FPL, ASL VxWorks, Linux OS	Yes, IDE	Yes	Cycle-based, C/Java API's	Yes	Perf. analysis Packet gen. Ref. Board
MP SoC School, July 2002						-57-

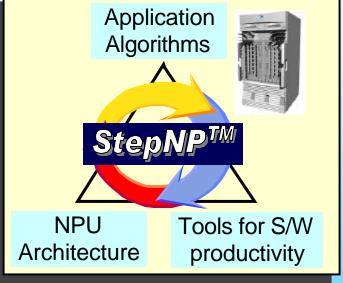
NPU Tools Summary

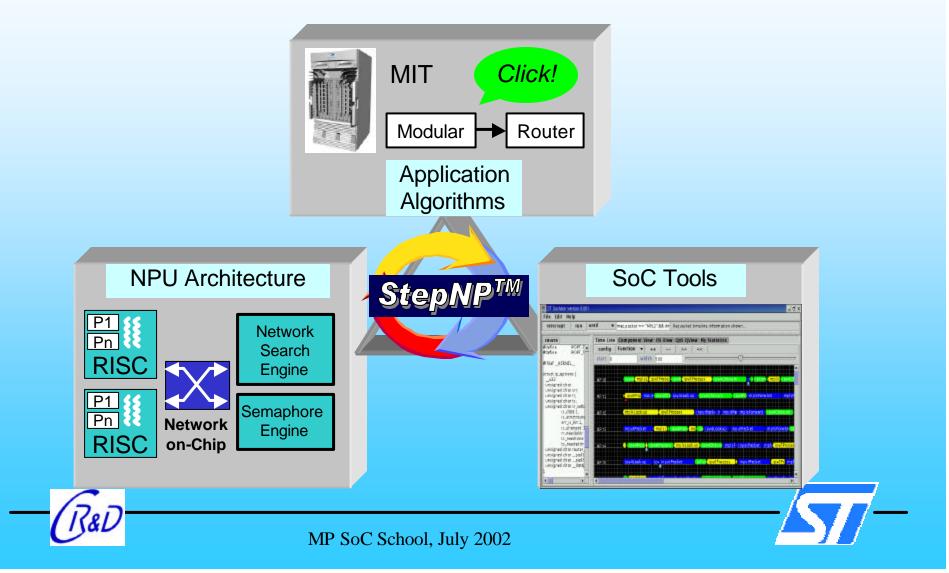
	<u>2.5G</u>	<u>10G</u>
	6/6	6/6
Source-level debugger	4/6	6/6
System-model (cycle-based)	4/6	4/6
O/S support (mostly on ctrl proc) 4/6	4/6
Packet generation	5/6	2/6
HLL compiler	4/6	6/6
Performance analysis	4/6	<u>3/6</u>
Multi-processor compilation	<u>0/6</u>	<u>2/6</u>



Outline

Network Processors


- □ <u>StepNP[™] Research NPU Platform</u>
 - >Overview
 - ➤Parallel processor architecture
 - Router application software
 - SoC tools and methods
- R&D Needs Outlook


StepNPTM Reference Platform

System-level Telecom **Exploratory Platform for** Network Processing For Academic Partners Canada, International **For Commercial CAD partners** For ST system design, embedded systems and platform automation R&D teams > Challenging internal driver For ST customers Reference platform for communication IP Tool driver for real NPU's

MP SoC School, July 2002

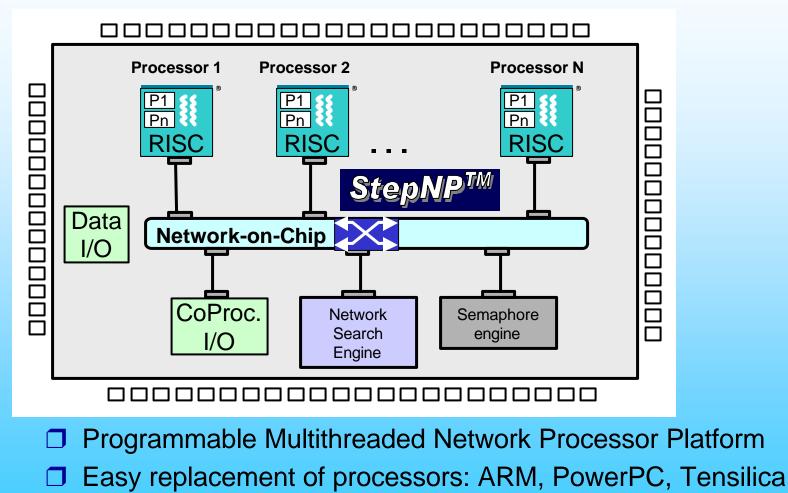
STMicroelectronics StepNPTM Reference Platform

StepNPTM Reference Platform

Tools for S/W

productivity

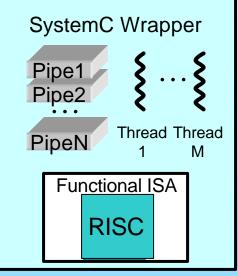
Application S/W Application MIT Click modular router Algorithms Architecture > Processor array: ARM, Tensilica, StepNP PowerPC, DLX > Interconnect: NPU Split-transaction bus, Architecture Octagon, Spin, Amba, ring, crossbar Network search engine, co-proc., semaphore engine, memory, I/O Tools ST NPU SoC tools prototype MP SoC School, July 2002


StepNP[™] Outline

What is StepNP[™]?
Hardware Architecture
Multi-threaded processors
Interconnect
Routing software
Tools and Methodologies

StepNPTM H/W Architecture

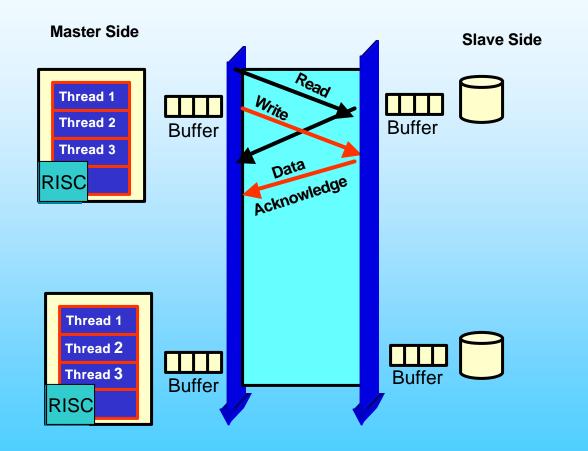
H/W Multi-threaded Processor


Principal approach : Block interleaving technique: The instructions of a thread are executed successively until an event occurs that may cause latency (ie: read memory data)

StepNPTM Reference Processor

Hardware multi-threaded processor >> Standard approach for network processors Hide latency via zero overhead thread context switch Configurable number of hardware threads per processor (default 8) > Configurable pipeline depth (default 4) Each thread executes functional instruction set (e.g. ARM, PowerPC) StepNP primary focus not on instruction set of NPU SystemC cycle-accurate model >> Encapsulation of functional ISS (ARM, DLX, PowerPC, etc.)

StepNPTM Interconnect Models

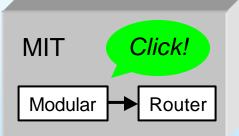

A general framework for interconnects, to allow architecture exploration

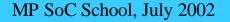
- Multi-level modelling
 - Transaction-level to cycle-accurate models
- Various interconnect architectures
 - Split-transaction bus, SPIN (Paris LIP6), Octagon (ST), ring, crossbar, Amba bus, Sonics
 - Currently developing various channel implementations +> Functional, transactional, cycle-based
 - Distributed simulation is another form of implementation

Split Transaction Bus Model

MP SoC School, July 2002

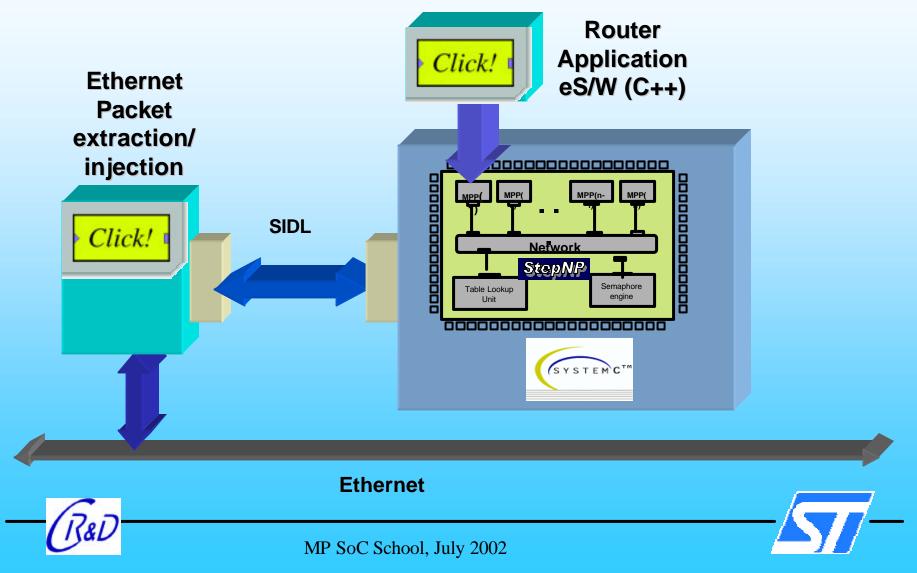
StepNP[™] Outline


What is StepNP[™]?
Hardware Architecture
>Multi-threaded processors
>Interconnect **Routing software**Tools and Methodologies



StepNPTM Routing Software

Uses the MIT Click router software MIT http://www.pdos.lcs.mit.edu/click Modular Click is >> Available under open-source license > modular, flexible, configurable Fine-grained modularity of Click allows efficient parallel execution. **Router configurations expressed in a simple** language

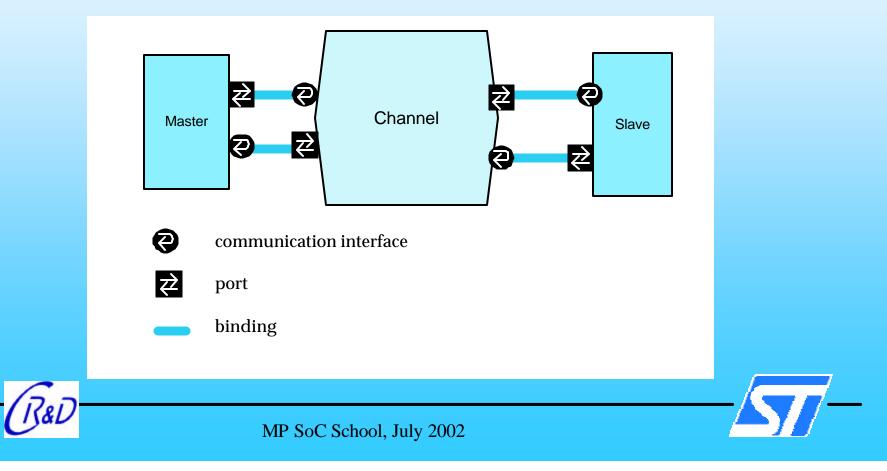

StepNPTM Routing Application

- □ A simple network translation (NAT) application
- Easy to set up testbench environment
- Emulates a "virtual host", by capturing packets off real ethernet, performs NAT algorithms, and injects back on to ethernet.
- Can set up real network applications (telnet or web browsing) with the virtual host, and watch StepNP simulator processing packets.

Application and Architecture Testbench

StepNP[™] Outline

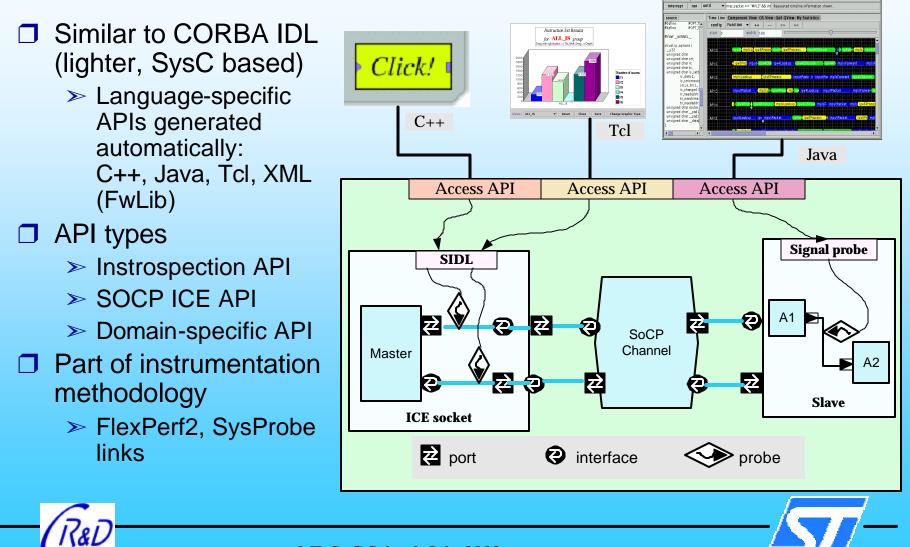
□ What is StepNP[™]?
 □ Hardware Architecture
 > Multi-threaded processors
 > Interconnect
 □ Routing software
 □ Tools and Methodologies



SOCP Transaction-Level Model Channel Interface

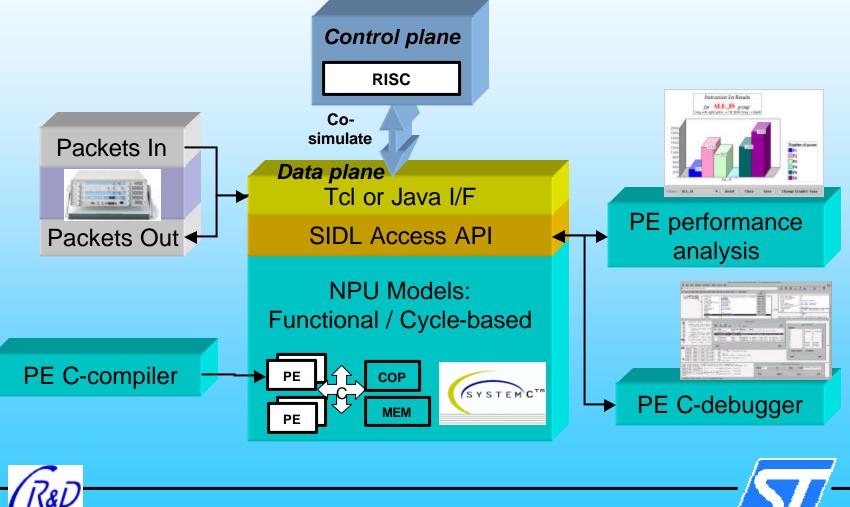
Based on OCP (VCI) semantics

Transaction-level interface (no pins, signals, clk)

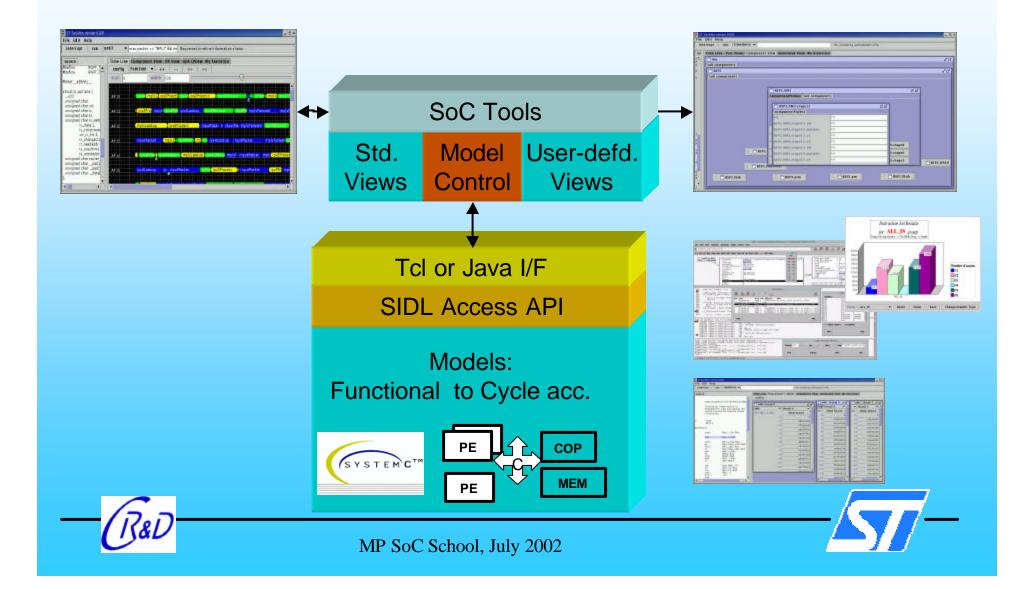


SOCP Channel Interface (contd.)

Simulation speed results for functional **SOCP** implementation >Unix Ultra80 (450 MHz) 250 KHz (to 1.2 MHz) ► Linux PC (800 MHz) 1.5 MHz (to 1.5 MHz) Distributed simulation using SOCP > Special SOCP channel uses TCP/IP, SystemC modules assigned manually to W/S Lower bound on simulation speed (if limited only by TCP/IP communication) ⇒30 KHz over TCP/IP 100Mb Ethernet Exploring Myrinet implementation (U. of Montreal)



SIDL (SystemC IDL)


MP SoC School, July 2002

NPU eS/W Tools

MP SoC School, July 2002

StepNPTM Tool Platform

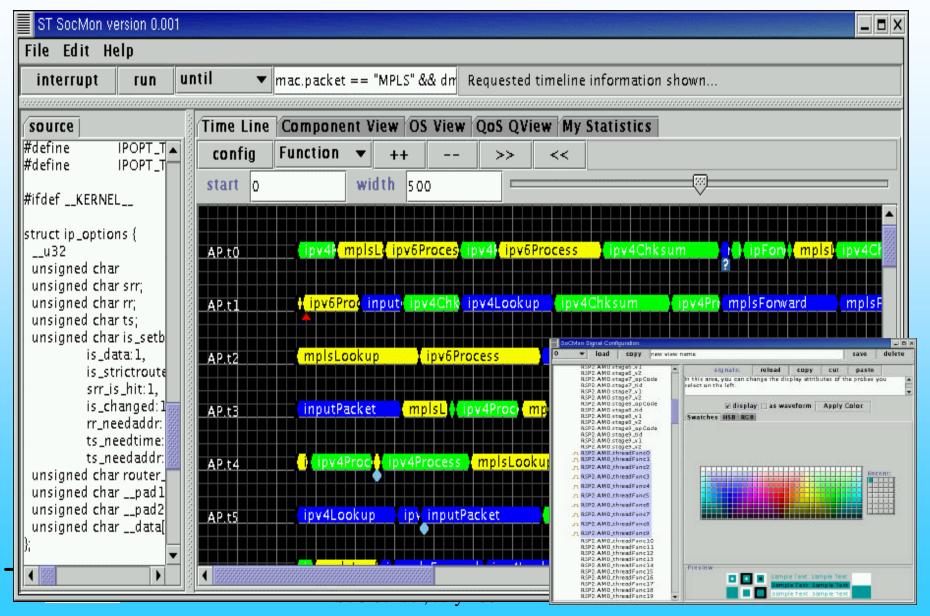
SoC-level User-extendable platform

SoC execution debug

 multi-threaded support, backtracking features

 SoC execution analysis

 Logical, temporal, spatial perspectives
 Range of abstraction levels supported


 SoC execution control

 Well-defined and powerful interface to SoC model
 Enables integration with other system software
 Interfaces for C++ and scripting languages

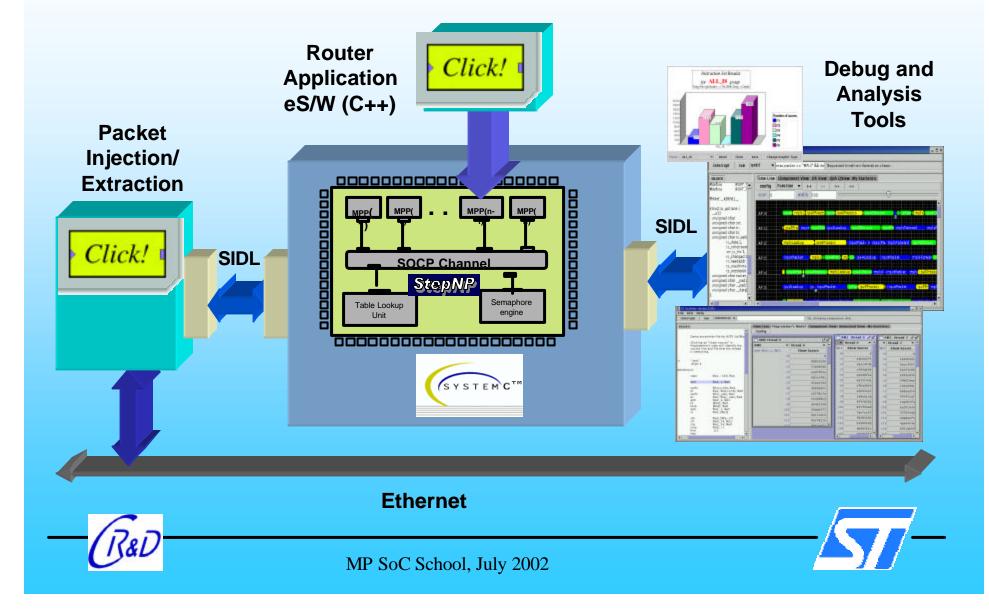
SoC Tools – Timeline View

SoC Tools – Programmer's View

ST SocMon version 0.002				\$newIssue(0, 0)				
File Edit	Help	ψΠ	φπεψισσαε(0, 0)					
interrupt	interrupt run until v \$newlssue(0, 0)							
source		Time Line Programmer's Model Pipeline View	Component V	iew Annotated View	My Sta	atistics		
		Config						
Demo asse	embler file I			thread 0 🗗 🖉		thread 1 🗗		
Clicking o	n "show source" in							
	er's view will identify the	thread 0	•	thread 0 🔻 📥	v t	hread 1 🔻 📥		
	e and file that the thread		<mark>%0 2</mark>		% 02			
is executir	ig.	▼ thread 0 ▼	p	Show Source	р	Show Source		
		add %02, 1, %02	rC	0	rO	0		
".text" .align 4		Single Step Show Source	t i		r1	e4b3e2f5		
nput:		0 01	r2		r2	5a1c4748		
I .	~	r1 00033288						
save	%sp,-120,%sp	r2 756b96db	г3		r3	cf84ab9b		
add	%02, 1, %02	r3 ead3fb2e	r4		r4	44ed0fee 🦉		
sethi	%hi(.LLC0), %o1	r4 603c5f81	r5	9f0624ae	r5	ba557441		
or sethi	%o1,%lo(.LLC0),%o0 %hi(iob),%o1	r5 d5a4c3d4	re	5 146e89 0 1	r6	2fbdd894		
or	%o1, %lo(iob), %o2 🦰		r7	89d6ed54	r7	a5263ce7		
add Id	%o2,4,%o1 [%o1],%o2	r6 4b0d2827	rð	ff3f51a7	r 8	1a8ea13a		
ldub add	[%o2], %o0 %o2, 1, %o2	r7 c0758c7a	r9	74a7b5fa	r9	8ff7058d		
st	%o2, [%o1]	r835ddf0cd	r10	ea101a4d	r10	055f69e0		
stb	%00, [%fp-17]	r9 ab465520	r11	5f787ea0	r11	7ac7ce33		
sll sra	%o0, 24, %o1 %o1, 24, %o0	r10 20aeb973	r12	d4e0e2f3	r12	f0303286		
cmp bne	%o0, -1 .LL5	r11 96171dc6	r13	4a494746	r13	659896d9		
nop		r12 0b7f8219	r14	bfb1ab99	r14	db00fb2c		
b	.LL4							
пор			r15		r15	50695f7f		
ldub sll	[%fp-17], %o0 %o0, 24, %o1		r16	6 aa82743f	r16	c5d1c3d2		
sra	%01,24,%00		r17	1fead892	r17	3b3a2825		
cmp be	%o0, 46 .LL35		r18	95533ce5	r18	b0a28c78		
nop		🗂 thread 31 📄 thread 3	0					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								

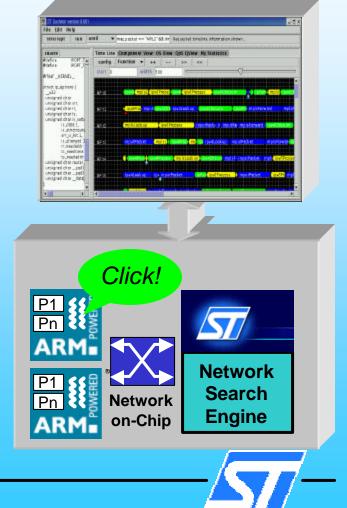
SoC Tools - Component View

- □ Shows layout of model components in 2D format
- Model component structure automatically obtained from SystemC model API
- Component graphical representation augmented with configurable information from:
 - >> Model signals, attribute values
 - » software variable values
 - > user-defined function of these primitive values
 - >> user-defined functions driving presentation objects



Soc Tools - User Defined Views

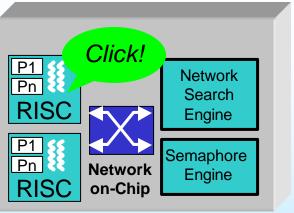
- Develop framework that allows end-user to construct application-specific views
- **Two levels: scripting and Java-level**
- Scripting ("easy" extensions): User can write scripts accessing model state, which drives provided presentation objects
- Java-level (power user): Provide Java SoC Monitor IDE environment and framework classes, Java Beans, etc, for extending the user interface
- Framework classes: for model access, control, and presentation

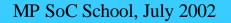


StepNPTM: Putting it all Together

StepNPTM Application: NSE Reference Platform

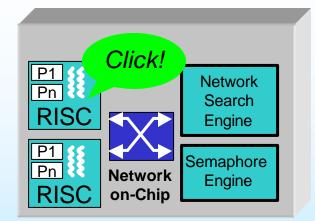
- Customer learning tool
- Illustrate programming and use of NSE
- Example usage for typical routing applications
 - Applications developed using Click Router (NAT, IPv4)
 - >> BGP packet traces
- Visualization and control environment





MP SoC School, July 2002

StepNPTM Benefits


Driver for ST SoC tools/methods Semaphore Pn Network Engine RISC on-Chip Transaction-level modeling > Working on standard instrumentation approach Driver for ST FlexWare eS/W tools >> FlexPerf2 performance analysis > SoC-level debug, FlexCC-based NPU C compiler, ISS tools Reference platform for customers > Including models of ST IP: Network Search Engine, Octagon network-on-chip Environment reused for customer NPUs Vehicle for university interaction

StepNPTM Benefits (2)

- Network Processing training
 - > Architecture:

H/W multi-threading, etc.

> Application:

Click router application

- Commercial CAD tool evaluation
 - Modelling tools: SystemC, ISS, System-level modeling

Semaphore,

- Verification tools
- **Emerging CAD tool driver:**
 - >> Combines two key elements of next gen. SoC's
 - 1. Multi-processor
 - 2. Network on Chip

StepNPTM Current Work

Integration with ST Network Search Engine

 Extend SoC debug/analysis tool

 SystemC instrumentation methodologies
 SOCP transaction-level I/F validation

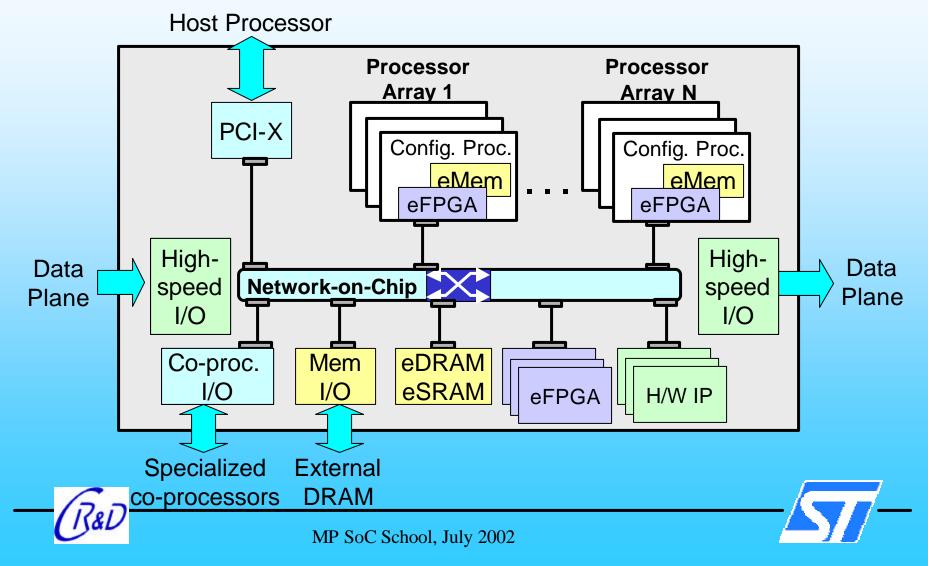
 Integrate with instrumentation methodology

Beta release targeted for Sept. 2002
 To selected Univ. and CAD partners
 Open Source in 2003

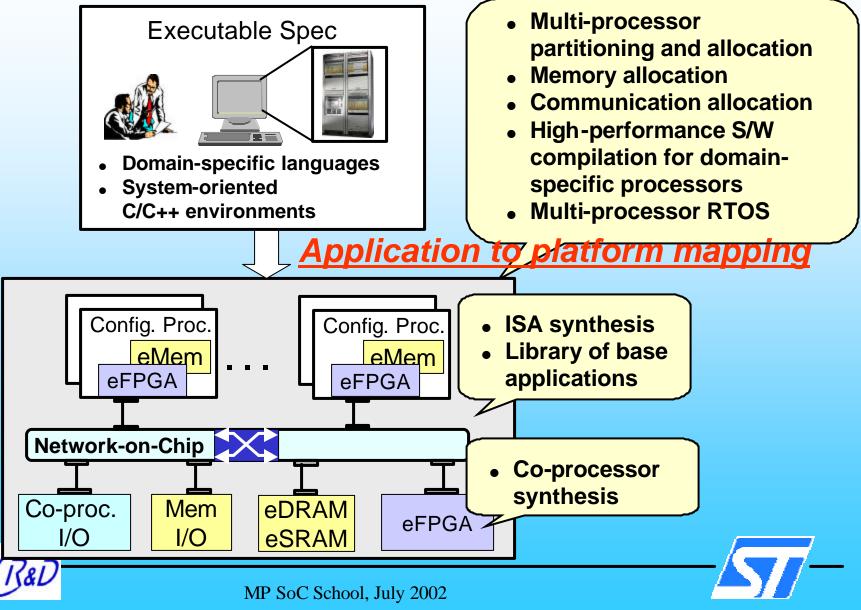
Next 'Steps'

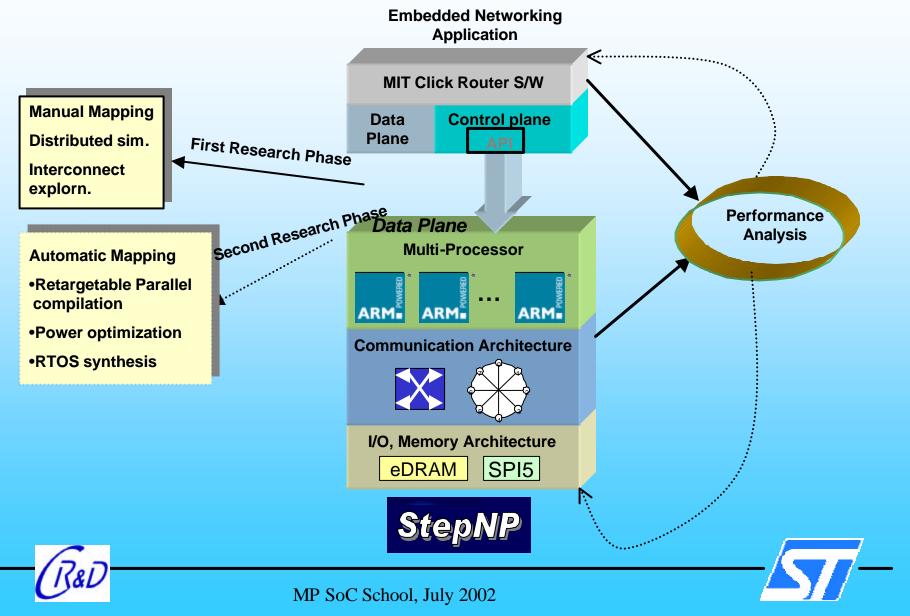
New Processors, co-processors Tensilica (+ bit-manip. instrns.) Ec. Poly. Montreal LisaTek model integration Univ. Aachen, ST New Interconnect > SPIN LIP6 lab > ST Octagon, AMBA bus Univ. Montreal Application S/W > 4~6 representative applications, ST/Ottawa, LIP6 manually mapped onto threads/processors SoC Tools > Continue development current prototype ST/Ottawa > SystemC instrumentation methods ST/Ottawa

Outline


Network Processors
 StepNPTM Research NPU Platform
 <u>R&D Needs Outlook</u>
 Communication processor architecture of the future?
 Key automation technologies

>University interaction




Communication Processor Architecture of the Future?

Key Automation Technologies

University Research Framework

StepNPTM Cooperation

Academic cooperation
 Univ. Montreal and Ecole Polytechnique Montreal
 U. Paris LIP6 (SPIN SoC packet-based network)
 U. Aachen (ISS/SystemC cosim, eS/W tools)
 U. Toronto (Multi-processor compilation)
 Polit. Milan (Netw.-on-chip power optimization)
 CMC (Canada-wide StepNP distribution)
 Others tbd

➤The usual suspects

Conclusion

NPU's are excellent driver for next generation SoC tools & methods □ StepNPTM reference platform > SystemC architecture model framework MIT Click Router application software > SoC methods (SOCP, SIDL) and tool framework ➤Plan for open source in 2003 Many R&D challenges Network-on-Chip architectures Multi-processor compilation

