
11/06/02- 1

Communication as the backbone for
a well balanced system design

Eric.Verhulst@eonic.com

Eonic Solutions GmbH, Germany

www.eonic.com

MP SoC Summer School
8 –12 June 2002

11/06/02- 2

The von Neumann ALU versus an embedded processor

n The sequential programming paradigm is based on the von Neumann
architecture

n But this was only meant for one ALU
n A real processor in an embedded system :

– Inputs data
– Processes the data : only this covered by von Neumann
– Output the result

n On other words : at least two communications, often one computation
n => Communication/Computation ratio must be > 1 (in optimal case)
n Standard programming languages (C, Java, …) only cover the

computation and sometimes limited runtime multitasking
n Conclusion :

– We have an unbalance, and have been living with it for decades
n Reason ? : history

– Computer scientists use workstations
– Only embedded systems must process data in real-time
– Embedded systems were first developed by hardware engineers

11/06/02- 3

Multi-tasking

n Origin :
– A software solution to a hardware limitation
– von Neumann processors are sequential, the real-world is “parallel” by

nature and software is just modeling
– Developed out of industrial needs

n How to ?
– A function is a [callable] sequential stream of instructions
– Uses resources [mainly registers] => defines “context”
– Non-sequential processing =

• switching between ownership of processor(s)
• reducing overhead by using idle time or to avoid active wait :

– each function has its own workspace
– a task = function with proper context and workspace

• Scheduling to achieve real-time behavior for each task

11/06/02- 4

Scheduling algorithms

n Three dominant real-time/scheduling paradigms :
– control flow :

• event driven - asynchronous : latency is the issue
• traverse the state machine
• uncovered states generate complexity

– data-flow :
• data-driven : throughput is the issue
• multi-rate processing generates complexity

– time-triggered :
• play safe : allocate timeslots beforehand
• reliable if system is predictable and stationary

– REAL SYSTEMS :
• combination of above
• distinction is mainly implementation and style issue, not conceptual
• SCHEDULING IS AN ORTHOGONAL ISSUE TO MULTI-TASKING

11/06/02- 5

Why Multi-Processing ?

n Laws of diminishing return :
– Power consumption increases more than linearly with speed
– Highest speed achieved by micro-parallel tricks :

• Pipelining, VLIW, out of order execution, branch prediction, …
• Efficiency depends on application code

– Requires higher frequencies and many more gates
– Creates new bottlenecks :

• I/O and communication become bottlenecks
• Memory access speed slower than ALU processing speed

n Result :
– 2 processors @1F Hz can be better than one @2F Hz if

communication support (HW and SW) is adequate
n The catch :

• Not supported by von Neumann model
• Scheduling, task partitioning and communication are inter-dependent
• BUT SCHEDULING IS NOT ORTHOGONAL TO PROCESSOR MAPPING

AND INTERPROCESSOR COMMUNICATION

11/06/02-

Generic MP system

Shared Memory

Int Mem Int Mem Int Mem

Local
Mem

Local
Mem

Local
Mem

Local
Mem

Int Mem

T

T
TT

T

TT

T

T

T

D

DD

DDD

T
D

Task

data

11/06/02- 7

A task is more

n Tasks need to interact
– synchronize
– pass data = communicate
– share resources

n A task = a virtual single processor or unit of abstraction
n A (SW) multi-tasking system can emulate a (HW) real system
n Multi-tasking needs communication services
n Theoretical model :

– CSP : Communicating Sequential Processes (and its variations)
– C.A.R. Hoare
– CSP := sequential processes + channels
– Channels := synchronised (blocked) communication, no protocol
– Formal, but doesn’t match complexity of real world

n Generic model : module based, multi-tasking based, process oriented ,…
– Generic model matches reality of MP-SoC
– Very powerful to break the von-Neumann constrictor

11/06/02- 8

There is only programs

n Simplest form of computation is assignment :

a:= b

n Semi-Formal :
BEFORE : a = UNDEF; b = VALUE(b)
AFTER : a = VALUE(b); b = VALUE(b)

n Implementation in typical von Neumann machine :

Load b, register X
Store X, a

11/06/02-

CSP explained in occam

PROC P1, P2 :
CHAN OF INT32 c1,c2 :

PAR
P1(c1, c2)
P2(c1, c2)

/* c1 ? a : read from channel c1 into variable a */
/* c2 ! b : write variable b into channel c2 */
/* order of execution not defined by clock but by */
/* channel communication : execute when data is ready */

P1 P2
C1

C2

Needed :

- context
- communication

11/06/02-

A small parallel program

C1

P1 P2
INT32 a :

SEQ
a:= ANY
c1 ! a

INT32 b :

SEQ
b:= ANY
c1 ? bEquivalent :

SEQ
INT32 a,b :
a:= ANY
b:= ANY
b:= a

No assumption in PAR case about order
of execution => self-synchronising

11/06/02- 11

The PAR version at von Neumann machine level

n PROC_1
Load b, register X
Store X, output register
(hidden : start channel transfer)
(hidden : transfer control to PROC_2)

/*Single Processor*/
n PROC_2

(hidden : detect channel transfer)
(hidden : transfer control to Proc_2)
Load input register, X
Store X, b

n In between :
– Data moves from output register to input register
– Sequential case is an optimization of the parallel case

11/06/02- 12

The same program for hardware with Handel-C

Void main(void)
par /* WILL GENERATE PARALLEL HW (1 clock cycle) */
chan chan_between;
int a, b;
{ chan_between ! a
chan_between ? b

}
But :

Seq /* WILL GENERATE SEQUENTIAL HW (2 clock cycles) */
chan chan_between;
int a, b;
chan_between ! a
chan_between ? b
}

11/06/02- 13

Consequences

n Data is protected inside scope of process
n Interaction is through explicit communication
n For HW design :

– In order to safeguard abstract equivalence :
• Communication backbone needed
• Automatic routing needed (but deadlock free)
• Process scheduler if on same processor

– In order to safeguard real-time behavior
• Prioritisation of communication for dynamic applications
• Allocate time-slots beforehand for stationary applications

– In order to handle multi-byte communication :
• Buffering at communication layer
• Packetisation
• DMA in background

– Result :
• prioritized packet switching : header, priority, payload
• Communication not fundamentally different from data I/O

11/06/02- 14

Future chips becoming SoC

n High NRE, high frequency signals
n Conclusion :

– multi-core, course grain asynchronous SoC design
– cores as proven components -> well defined interfaces
– keep critical circuits inside
– simplify I/O, reduce external wires :

• high speed serial links, no buses

– NRE dictates high volume -> more reprogramability
– system is now a component
– below minimum thresholds of power and cost, it becomes cheap to

“burn” gates
– software becomes the differentiating factor

11/06/02- 15

The (next generation) SoC

GP-RISC(s)

GP-DSP(s)

Cross-bar

A-DSP

FS-DSP Logic

Memory

General Purpose I/O

General Purpose FPGA Logic

Vcc

Gbit/s LVDS I/O

Bulk Memory

Inter SoC Links

I/O Devices

Network Interfaces

11/06/02- 16

Early examples

n Board level : adoption of “switch fabrics” for telecom
– SpaceWire (IEEE1355) : in use at CERN, ESA, …
– PICMG 2.16 … 2.20
– PICM 3.xx (AdvancedTCA)

n Motorola e500
– Based on RapidIO
– On-chip switch
– Complex due to throwing together memory addressing and link comm

n Xilinx VirtexII-Pro (available)
– Aurora links (3.4 Gbit/sec, user programmable link layers, protocols)
– Up to 4 PPC inside + softcore CPU

n Altera Stratix
– Links, memory
– ARM and softcore CPU

11/06/02- 17

Beyond multi-tasking in C

n Multi-tasking = Process Oriented Programming
n A Task =

– Unit of execution
– Encapsulated functional behavior
– Modular programming

n High Level [Programming] Language :
– common specification :

• for SW
– compile to asm

• for HW
– compile to VHDL or Verilog

– E.g. program PPC with ANSI C (and RTOS), FPGA with Handel-C
– C level design is enabler for SoC “co-design”

• More abstraction gives higher productivity
• But interfaces be better standardized for better re-use
• Interfaces can be “compiled” for higher volume applications

11/06/02- 18

Next : Virtual Single Processor (VSP) model

Multitasking and message passing
Process oriented programming
Interfacing using communication protocols
Application doesn’t need to know physical layer

n Transparent parallel programming
– Cross development on any platform + portability
– Scalability, even on heterogeneous targets

n Distributed semantics
– Program logic neutral to topology and object mapping
– Clean API provides for less programming errors
– Prioritized packet switching communication layer

n Based on “CSP” (C.A.R. Hoare): Communicating Sequential Processes:
VSP is pragmatic superset

n Implemented first in Virtuoso VSP RTOS (now VSPWorks of Wind River)

11/06/02- 19

Virtuoso’s Virtual Single Processor :
a pragmatic CSP : distributed semantics

Sampling Task1 Monitor Task

Console Input Driver

Console Output Driver

Input Queue

Output Queue

Sampling Task2

Mail Box1

Sema1

Sema2

Sema3

Display Task

+

Node1

Node2

Node 3

+

+

RTOS Objects as

Orthogonal set :

- tasks

- drivers

- binary events

- counting semaphores

- FIFO queues

- mailbox/messages

- channels

- resources (=mutex)

- memory maps/pools

11/06/02- 20

Hierarchy and HW and time resources

Abstract behavior
Application level
SW flexibility
High Level Language
Register context
Memory use
System level
Latency
Data packet sizes
Hardware determinism

11/06/02-

Mapping the RTOS architecture into HW

n On today’s processors :
– Assembler required (a lot of it !)
• No or little support for context switching (+ obstacles)
• No or elementary support for communication

n The functional layers of an application
– I/O :
• Interrupt processing ISR0 (2-4 regs)
• Buffering data ISR1 (4-6 regs)
• Drivers (atomic datamovers) Nanokernel process (8 regs)
• NOTE : above can be pushed into co-processing hardware !

– Processing :
• Data driven : DSP Task & coprocessors (all regs)
• Control driven : decision logic Task (global data)

11/06/02-

The von Neumann state machine and its solution

n Most processors are designed for throughput maximalisation
n Single CPU handles processing and I/O
n Large register context < > I/O & swapping
n I/O “engines” (if any) are special purpose
n Increasing bandwidth gap CPU-memory
n Result : large, complex state machine
n Solution :

– parallel CSP architecture at the CPU level
– Means : isolate the processing from the I/O
– use “asynchronous” design techniques

11/06/02-

A CSP based processor that is VSP friendly

MAIN CPU

Communication zone and scheduler

Interrupt
Processor 1

Interrupt
Processor N

Interrupt
Processor 2

Ext Memory

Data Moving Processor (MMU & DMA)

Comm Links

Internal memory / cache

Wired functionI/O

11/06/02-

CSP at the HW level

n Request/Ack protocol assures correct data transfer between async units, even at
the register level

n Is like the mailbox mechanism

Sender

Receiver

Req

Ack

Data
BUF

11/06/02- 25

RTOS objects : mapping onto HW

+

Software

Task - Process

KS_FifoPutW

KS_MsgPutW

KS_SemaSignal

Hardware

Logic State Machine

FIFO memory

shared memory + dma

status register + counter

RTOS objects can be used for SW+HW system
specification, simulation and implementation

11/06/02- 26

A SW-HW implementation (see slide 19)

Monitor Task

Display ControllerOutput FIFO

A/D channel1

Mail Box1

Processing
Task

A/D channel2

Buf1

Buf2

Reg1

Reg2
Core CPU

DMA

DMA

DMA
Steps :

1. Algorithm using MATLAB/
SDT, Pegasus, ...

2. Simulate logic model
with RTOS simulator on
host OS like NT

3. Run RTOS program on
target CPU

4. Map parts onto SW
(C to ASM - binary)
map parts onto HW
(C to VHDL or RTL)

11/06/02- 27

Full application : Matlab/Simulink type design

n Embedded DSP app with GUI front-end

DAC
DAC
Driver
task

ADC
ADC
Driver
Task

Virtuoso tasks & communication channels, on specific DSP
card

Read
Audio
Data
Task

Process
Audio
data

stage 1

Process
Audio
data

stage 2

Split L-R
channels

Process
R

channel
stage 3

Process
L

channel
stage 3

Process
R

channel
stage 4

Process
L

channel
stage 4

Play
Audio
Data
task

Process
Audio
data

stage 6

Process
Audio
data

stage 5

Channel
joiner

DSP 2

DSP 4

DSP 1

DSP 3

GUI front-end

Parameter knobs,
monitor windows,

etc...

Front-end can be
written in any

language, and run
remotely

Parameter settings
& Control task

Monitor Task

11/06/02- 28

Virtuoso VSP off-the-shelf

Task 1

Task 2

Task 3

task 4

task 5

task 6

task 7ch 1
ch 9

ch 10ch 7
ch 8

ch 5

ch 6

ch 4

ch 3

ch 2

Sharc w/
Virtuoso

Sharc w/
Virtuoso

Sharc w/
Virtuoso

Block diagram at top level, executable spec in e.g. C

11/06/02- 29

Today : Heterogeneous VSP with host OS

Task 1

Task 2

Task 3

task 4

task 5

task 6

task 7ch 1
ch 9

ch 10ch 7
ch 8

ch 5

ch 6

ch 4

ch 3

ch 2

ARM w/
Virtuoso API

using
Windows CE, VxWorks

scheduler

Embedded DSP 1
w/

Virtuoso

Embedded DSP 2
w/

Virtuoso

Current state-of-the-art ASIC

these tasks can call
both Virtuoso and
WinCE/VxWorks

services

11/06/02- 30

Heterogeneous VSP with reprogrammable HW

Task 1

Task 2

Task 3

task 4

task 5

task 6

task 7ch 1
ch 9

ch 10ch 7
ch 8

ch 5

ch 6

ch 4

ch 3

ch 2

ARM w/
Virtuoso API
intermixed on

Windows CE or
EPOC

Embedded DSP 1
w/

Virtuoso

FPGA

C-to-FPGA compiler

Next-next generation state-of-the-art ASIC
Current board level designs

ideal for fine-grained tasks
(operating on sample streams)

ideal for coarser grained tasks
(frame/block processing)ideal for control & GUI tasks

11/06/02- 31

Eonic’s CSPA concept : board level architecture

n CSPA : Communicating Signal Processing Architecture
n Designed for high-end scalable DSP systems
n Central ideas :

– Scalability (up or down) from 1 to 1000’s of processors
– Distribute everything : I/O, processing, communication
– Hence, link based communication (bus is slow I/O device)
– “Active communication backbone” : by using FPGA
– Must be supported by software programming model

n Result :
– Very scalable
– No bottleneck for processing : can be done in communication stream

n Problems found :
– Many processors lack busses and DMA
– Bus bridges and interfaces become too complex (if it works at all)

11/06/02- 32

CPU Node

DSP

DSP
or

G3 / G4

On-board
PMC-

Module

JTAG

LINK(s) to backplane on P2

CSPA: Atlas' generic architecture

L2 Cache

 Flash
ROM

FP
G

A
-F

P
G

A
in

te
rc

o
n

n
ec

t

FPGA

PCI
Bridge

PCI-Macro
or

memory
mapped I/O

Customer
specific
interface

Trigger-Bus
Trigger, Sync,

Clock

LINK interfaces
and

communication
FIFOs

Temperature
monitor

Intelligent
Communication

& I/O-Engine

with

FIFOs
and

DMAs

Voltage
monitor

Peripheral
Chipset

HotSwap

Local Memory

C
om

pa
ct

P
C

I o
n

P
1

L
in

kb
u

s
o

n
 P

2
T

ri
ig

er
B

u
s

o
n

 P
2

Atlas processing node (one or more on each board)

customer
specific

algorithmic
pre-or post
processor

64bit local-
PCI

direct J4 connection

cPCI

64bit/66MHz local-PCIBoard
specific

glue-logic

Watchdog

CSPA as implemented on Eonic’s Atlas

11/06/02- 33

Links and switch fabrics

n Links : idea pioneered by INMOS transputer, putting CSP model in HW
n Switch fabrics : as busses are hitting the wall, “switch fabrics” are called

at the resque. Especially for broadband telecom
n But : why do switch fabrics like RapidIO, Infiniband, etc. have support for

e.g. “cache coherency in shared memory ?, PCI interfaces ?
n Reason : programming model and architectural assumptions kept

unchanged
n But : how to handle 12+ wires, each at Gbit/s that have to keep in sync ?
n What happens when such signals go off-chip, go through PCB,

connectors, backplane, … ?
n Needed : go bit serial with LVDS type signaling, clock recovery from data,

8/10 bit encoding, DMA, FIFO, flow control, runtime error detection and
recovery, hot reconnect, remote reset

n Solutions : back to basics = simple, but complete and flexible
n Example : IEEE1355, Spacewire : just a link with higher level protocol
n Result : less gates, less special circuits, less power, better performance

and RELIABILITY !

11/06/02-

Beyond multi-tasking

n The CSP model acts as a hierarchical compositor for sequential
(procedural) processes

n Problem is now how to handle the “connections” and the communication
protocols

n Hence : statically defined programs
n Problem domains :

– runtime changes
– I/O and memory management become explicit
– Programming languages reflect control flow architecture of original

Von Neumann machine

11/06/02-

From procedure to data oriented

n Today’s procedural view :
– Output = F (input)
– F is central
– input and output is peripheral activity
– Time introduced as a side-effect and a buffer

n Another view : merge data and procedures -> functional view
– [Data*(F_output)] t+n = [Data(F)] t : DSP natural !
– procedures and data are bundled into “active” packets
– runtime loading and scheduling allows for self scaling and resilience

to errors, makes it time-neutral

11/06/02-

CSP & Active Packets

CSP implementation :

P1

Active Packets’ view :

Data

P1
C1

P2

P2M

11/06/02- 37

Conclusion

n RTOS is much more than real-time
n General purpose “process oriented” design and programming
n Hide complexity inside chip for hardware (in SoC chip)
n Hide complexity inside task for software (with RTOS)
n Hide complexity of communication in system level support
n CSP provides unified theoretical base for hardware and software, RTOS

makes it pragmatic for real world :
– “DESIGN PARALLEL, OPTIMIZE SEQUENTIALLY”

n Software meets hardware with same development paradigm :
– Handel-C for FPGA, “Parallel” C for SW

n FPGA with macro-blocks is pre-cursor of next generation SW defined
SoC :
– Needs concurrent SW development paradigm
– Needs standardized communication backbone

n Time for asynchronous HW design ?

