
A. A. Jerraya

Dr. Ahmed Amine JERRAYA

TIMA Laboratory
46 Avenue Felix Viallet

38031 Grenoble Cedex France
Tel: +33 476 57 47 59
Fax: +33 476 47 38 14

Email: Ahmed.Jerraya@imag.fr

HW-SW Interfaces Design
for Multiprocessor SoC

HW-SW Interfaces Design
for Multiprocessor SoC

MPSOC’03

MPSOC’03 - 2Ahmed A. Jerraya

HW-SW Interfaces for MPSoC: Summary
1. SoCs are made of heterogeneous components:

Heterogeneous Interconnect is the enabler for Higher than RTL design

2. Coordination between hardware and software is hard to master:
Difficult to calibrate, Diversity, Complexity

3. MPSoC requires sophisticated application specific HW-SW
Interfaces: Multithreading, Interrupts, application specific communication

4. HW-SW interfaces design is the non rewarding part of the
design flow: Designing yet another Driver or Bridge

5. HW-SW interfaces design may be automated:
abtract HW and SW interfaces model is the key issue

6. Abstracting HW-SW Interfaces makes easier all the design
steps: Architecture exploration, SW design, HW design, HW-SW components

Integration, SoC Debug, SoC Validation.

MPSOC’03 - 3Ahmed A. Jerraya

Outline

1. The challenges of HW-SW interfaces

2. HW-SW Interfaces for MPSoC

3. HW-SW abstraction for MPSoC: the
concept of virtual architecture

4. ROSES: Automatic generation of HW-SW
interfaces for MPSoC

5. HW-SW Interfaces in the design flow

6. Summary

MPSOC’03 - 4Ahmed A. Jerraya

Mixed HW-SW Systems

Mixed implementation of integrated system
g A function implemented partially in HW and

partially in SW.

HW-SW interfaces abstract interaction between the HW
and SW parts.

SW

HWD
ec

o
d

in
g

P
ro

ce
ss

in
g

E
n

co
d

in
g

Signal in Signal out
HW-SW interfaces

MPSOC’03 - 5Ahmed A. Jerraya

HW and SW Make Use of Different
Concepts to Abstract Interfaces

SW communicates with the rest of the system through API.

HW communicates with the rest of the system through wires.

HW Component
Par

…
x<= ‘0010’
…

Rest of the
system

WIRES

SW Component
fo o

Read (x)
…

Rest of the
system

APIGAP

MPSOC’03 - 6Ahmed A. Jerraya

HW-SW
Interfaces

HW-SW Interfaces and Coordination

Master/slave single thread systems
are usually easy to model and to
design
API: Synchronous SW procedure
call

SW Adaptation
g Call parameters match HW

data ports
g IO Driver (Busy wait for

results)

HW Adaptation
g R/W to fixed addresses
g HS protocol to Sync

Communication
Multi-task multiprocessor systems
may require complex coordination.

Master
Sequencial SW program
…
Call HW (x, y, z)

Start done x y z

Slave HW function
wait start

…

sw

Hw

API

CPU Bus

HW-Adaptation

CPU (local Architecture)

SW Adaptation

done

Start done x y z

data@CTRL

MPSOC’03 - 7Ahmed A. Jerraya

HW and SW Interfaces Issues for MPSOC
For multi-threaded software,
the SW layer implementing the
API is very complex.
g Abstract Communication
g Concurrency management
g Fast reaction to Events
g Sophisticated I/O

Adapting to different OS or
CPU may require an additional
HW abstraction layer.

Each CPU may need to
communicate with more than
one device.
g Bus conflicts management
g Data conversion
g Buffering

Heterogeneous multiprocessor
may require complex
communication network.

OS & Comm.

Hardware
abstraction layer

CPU

Network
adaptation

Other
Cores

Communication Network

TaskTask Task

CPU Interface

API

MPSOC’03 - 8Ahmed A. Jerraya

Problems to be Solved by SW and
HW Adaptation Layer

SW Adaptation usually provided by OS & HAL
Resources sharing, multi-task management
Real-time services
I/O = adapts to different I/O schemes
Synchronization = interrupts management
Task inter-dependence = avoids dead locks

HW Adaptation Layers: links between different data, control
& clock signals

Arbitration
Timers
I/O Control (protocol conversion)
Synchronisation, event Management
Ensure data coherency

Coordination between hardware and software is hard to
master: Difficult to calibrate, Diversity, Complexity

MPSOC’03 - 9Ahmed A. Jerraya

Pure HW Design and Pure SW Design

Pure hardware design is much easier
than mixed HW-SW design.
g Example: MPEG decoder for a fixed

standard and a fixed application.
g In the absence of multiple use or

evolution, the most complex
functions are easier designed as
pure hardware.

Pure software design using SMP is
easier for non constrained
communication.
g Example: MPEG decoder with no

real-time constraints
g If performances and/or hardware

cost are not an issue, the most
complex function is better
designed as pure software
eventually distributed for
performances.

— DCT Quant Coder

Quant

IDCT
Motion

Estimation
Compensation

MPEG Decoder

CPU1 CPU2 CPUn…

Communication Network

F
ixed

 co
m

m
u

n
icatio

n
sch

em
e

SMP

MPSOC’03 - 10Ahmed A. Jerraya

Taking Flexibility and Performances into
Account

Need to accommodate
different coding or
compensation schemes.

Performances & cost

g Need a specific processor
to accommodate a given
computation.

g Need a specific
communication scheme to
accommodate application.

— DCT Quant Coder

Quant

IDCT
Motion

Estimation
Compensation

MPEG Decoder

CPU1 CPU2 CPUn…

Communication Network

SMP

HW-SW interfaces is a non
avoidable aspect of SoC design

MPSOC’03 - 11Ahmed A. Jerraya

Application-Specific MP SoC
with Heterogeneous Processors and Network

— DCT Quant Coder

Quant

IDCT
Motion

Estimation
Compensation

MPEG Decoder

CPU1 CPU2 CPUn…

Generic
Communication Network

SMP

… HWn

ASIC

SW22

ASIP, DSP

SW and HW
Adaptation Layer

SW1

CPU

Application-Specific
Communication Network

MPSOC’03 - 12Ahmed A. Jerraya

HW-SW Interfaces is a Useful Concept
for MPSOC

Simplification
g Design of different parts may be separated.
g Separation between communication and

computation ease component reuse.
Modularity & flexibility
g Within an architecture a component may be

replaced, or implemented in different technology.
g Simpler control & synchronization scheme.

Allow to tune architecture performances to
application
g Using predefined communication structure may

induce overhead.
g We may take advantage of specific

communication infrastructure (buffering,
interrupts, …) to handle multi-tasking efficiency.

g Even for single thread CPU, busy waiting may be
avoided to save power.

SW

API

HW

WIRES

HW-SW
interfaces

MPSOC’03 - 13Ahmed A. Jerraya

Hardware-Software Interfaces Summary

HW-SW interfaces are needed for SoC including CPU.
g Non avoidable aspect of the design problem.

Coordination between hardware and software is hard to master.
g Difficult to calibrate
g Diversity
g Complexity

Pure SW design is non effective for SoC.

Pure hardware design is not flexible enough to ensure SoC ROI

HW-SW interfaces is a useful concept for MPSOC design.

MPSOC’03 - 14Ahmed A. Jerraya

Outline
1. The challenges of HW-SW interfaces

2. HW-SW Interfaces for MPSoC

3. HW-SW abstraction for MPSoC: the
concept of virtual architecture

4. ROSES: Automatic generation of HW-SW
interfaces for MPSoC

5. HW-SW Interfaces in the design flow

6. Summary

MPSOC’03 - 15Ahmed A. Jerraya

HW/SW Interface in the design Process

HW IP

Application SW

HW/SW interface

API

HW interconnect

Glue

OS level

HAL level

ISA level

RTL level

BCA level

TLM level

Com. level

1. Different Abstraction levels for both HW and SW
2. Partitioning and communication Architecture may be abstracted
3. Executable model makes global validation possible
4. May require different implementation models for simulation
5. Standards ease automation
6. Multiple abstraction layers ease inter disciplines communication

SW HW

Appli

OS

CPU HW

Comm. Network

MPSOC’03 - 16Ahmed A. Jerraya

HW Abstraction Levels

RTL level

BCA level

TLM level

HW IP

Application SW

HW/SW interface

API

HW interconnect

Glue

data

address

control

clk

RTL level

BCA level

TLM level

Many standardisation initiatives to abstract wires

Physical Hardware interface = Data+ Control + Ck

RTL: No abstraction

BCA(Bus Cycle accurate): Abstract Data
structures

TLM (Transaction Level Model)

Bus Transaction: Abstract Clock

Message: Abstract Control

MPSOC’03 - 17Ahmed A. Jerraya

Software Abstraction Levels

OS level

HAL level

ISA level

HW platform

Application SW

HW/SW interface

Platform API

HW interconnect

Glue

OS level: Application SW = Set of tasks running on abstract
operating system using OS API

ISA level: All software code is fixed.

HAL level: OS is actually implemented using a HAL API that
abstracts the underlying HW architecture.

OS level

HAL level

ISA level

Com. levelCom. level

Communication level: Set of tasks running on a not yet fixed
communication architecture (e.g. MPI).

MPSOC’03 - 18Ahmed A. Jerraya

? ?

Communication Network

? ?

IP1

…
IPn

HW/SW communication design
Heterogeneous MPSoC

My assumptions
g Distributed SW executed on

local architectures
g Complex Local Architecture

for SW sub-system (CPU,
local memory, Timer, PIC,
DMA …)

g On-chip communication
network

g HW IP

HW-SW interfaces
g Adapt SW Components to

local architectures
g Adapt SW sub-system to

network
g Adapt HW IP to network

MCU RAM

processor bus

DSP RAM

processor bus

SW

?

SW

?

…

MPSOC’03 - 19Ahmed A. Jerraya

HW/SW communication Abstraction

SW communication
abstraction

API hides rest of
system for SW
modules
HW-SW layers to
adapt SW modules
to rest of systems

HW communication
abstraction

HL interface hides
interconnect
HW-adaptation
layer to link HW
module to rest of
systemIP1 IPn

MCU RAM

processor bus …
DSP RAM

processor bus

Communication Network

HW
adaptation

HW
adaptation

HW
adaptation

HW
adaptation

OS OS
API API

SW SW

…

SW communication
abstraction

HW communication
abstraction

MPSOC’03 - 20Ahmed A. Jerraya

Outline
1. The challenges of HW-SW interfaces

2. HW-SW Interfaces for MPSoC

3. HW-SW abstraction for MPSoC: the
concept of virtual architecture

4. ROSES: Automatic generation of HW-SW
interfaces for MPSoC

5. HW-SW Interfaces in the design flow

6. Summary

MPSOC’03 - 21Ahmed A. Jerraya

The Virtual Component Model
Virtual component
g Component

Hardware

Software

Functional

g Abstract Interfaces
Required Services

Provided Services

Control Services

Synchronization

Parameters, ….

Execution Environment
g Abstract Platform (e.g. NoC, Cosimulation backplane, …)

Heterogeneous components thanks to adaptation

Execution Environment

Component 2

Abstract

Interface 2

Component 1

Abstract

Interface 1

MPSOC’03 - 22Ahmed A. Jerraya

The Virtual Component Model
A very popular SW Object models: CCM, Active objects,
Containers, DCOM….

Adopted by SoC communities: OCCN, StepNP, VCC,
OCP, VCI, TLM, Coware, SystemC …
Handles Heterogeneous Objects

Hides details and allow delay decisions through the use
of generic models

Allows different and sophisticated adaptation schemes

Allows automation for specific interfaces and/or target
architectures

Handles different abstraction levels

MPSOC’03 - 23Ahmed A. Jerraya

Heterogeneous System Specification
Basic model: a set of hierarchically interconnected modules

Basic concepts:
g Virtual Module

Interface, set of virtual ports (internal, external, SAP)
Content (Tasks / Instances + Communication channels)

System Specification

External port

Internal port

Abs. level Protoco
TLM FIFO

RT level AMBA

B

C

A

MPSOC’03 - 24Ahmed A. Jerraya

Outline
1. The challenges of HW-SW interfaces

2. HW-SW Interfaces for MPSoC

3. HW-SW abstraction for MPSoC: the
concept of virtual architecture

4. ROSES: Automatic generation of HW-SW
interfaces for MPSoC

5. HW-SW Interfaces in the design flow

6. Summary

MPSOC’03 - 25Ahmed A. Jerraya

ROSES: HW-SW Interfaces DA Flow

System Specification as virtual
architecture: Virtual modules
(Components and NoC) use
wrappers to abstract HW/SW
communication e.g Standard SW
C++/SystemC Built on top of API

M1

M2

M3

IPµP

M1
OS

CC

M3

CC

Physical communication interconnect

Architecture implementation as:
heterogeneous components and
sophisticated on-chip
communication Network linked
through HW and SW wrappers e.g
Same SW code, runs on
implementation on top of OS
Automatic generation of
application-specific on-chip
HW/SW interfaces: SW
implementation of SW & HW
adaptation

A
bstract com

m
unication

interconnect

MPSOC’03 - 26Ahmed A. Jerraya

Communication services API example

Virtual Architecture
HW/SW wrapper: virtual ports (API,
parameters)
SW, standard C++/SystemC built on top of
API

RTL architecture
Same SW code, runs on implementation
SW wrapper (implements API, task
control, interrupts, I/O)
HW wrapper (bridge to communication
interconnect)

include <port.h>
void Task_A ()
{…*value =
Ain.FIFO_read();
…. }

include <port.h>
void Task_B ()
{ …
Bout.FIFO_write
(&value);
… }

HW-SW Interfaces

Physical communication interconnect

void task_A ()
{ …
*value=Ain.FIFO_read();
Aout.HS_write(&value);
… }

void task_B ()
{ …
*value=Bin.HS_read();
Bout.FIFO_write
(&value);
…}

HS

Virtual Module

Abstract communication interconnect

Virtual Port API
FIFO_read(…)
POOL_SIZE = 32

SW Adaptation

Processor

HW Adaptation
FIFO_BoutFIFO_Ain

Processor adapter (arbitration)

IT
Manager

Task
Scheduler

I/O
Manager

API

HAL

MPSOC’03 - 27Ahmed A. Jerraya

Key Technology: Building Interfaces

Execution Environment

Component 1

Adaptation
Layer
Builder

Execution Environment

Component

Abstract

Interface
Services

Services

Interface Component
Required/Provided Services
Control and Synch Signals
User Extendable Library

Adaptation Layer Builder
Services Matching
Code Specialisation

Sched

wr

IO

Int

Interface
Component

Interface Component Library

Interface
ComponentInterface

ComponentInterface
ComponentInterface

Component
Works for building

SW, HW, Functional
Wrappers

send

Send

Write

MPSOC’03 - 28Ahmed A. Jerraya

HW-SW Interfaces Generation Flow

Proc. Adapter

CA CA
HW
Wrapper

PA (ARM7)

HWS
(timer) CA

(hsk)

HW wrapper library

Co-simulation
library

Co- sim.
generation

Executable
co-simulation

model

Application
Processor

SW
Wrapper

send recv

fifo TS ...

wr rd ...

...
API’s

Comm./Sys. Services

HAL

OS library

API’s
Comm./Sys.
Services

BSP
Co- sim.
generation

Executable
co-simulation

model
Emulation
Platform

Synthesis

SW Adaptation
generation

HW wrapper
generation

SW wr.SW wr.

RTL Architecture

Comm. network

HW wr.

A B

HW wr.

C

µP1 µP2

Virtual
Architecture
(SystemC)

Colif
A

B

C

MPSOC’03 - 29Ahmed A. Jerraya

ROSES on going activities
Specification: Virtual architecture Model

g HW SW interfaces at different Abstraction Levels

Architecture exploration
g Timed HW SW Interfaces Simulation at Different Abstraction levels
g Library based simulation models of OS and HAL
g Global system simulation

Application specific HW SW interfaces implementation
g Custom OS and Communication architecture generation
g HW adaptation architectures
g Partitioning HW SW interfaces

SoC Integration
g Targeting on Emulator
g Implementation model, Syntetizable RTL
g Cycle true Cosimulation Model

Debug of hardware/software interfaces at different abstraction
levels

Use OS generation flow to refine High Level test programs
Use same test programs at different abstraction levels

MPSOC’03 - 30Ahmed A. Jerraya

Outline
1. The challenges of HW-SW interfaces

2. HW-SW Interfaces for MPSoC

3. HW-SW abstraction for MPSoC: the
concept of virtual architecture

4. ROSES: Automatic generation of HW-SW
interfaces for MPSoC

5. HW-SW Interfaces in the design flow

6. Summary

MPSOC’03 - 31Ahmed A. Jerraya

System Design Flow Components

HW
design

SoC
Integration

HW-SW interfaces
Implementation

SW
design

System Architecture

System Specification

V
alid

atio
n

D
ata B

ase

T
E

S
T

RTL Design Flow

HW-SW Interfaces are required by all parts.

MPSOC’03 - 32Ahmed A. Jerraya

MPSOC Design of an OpenDivX Encoder

OpenDivX: free Mpeg4
encoder/decoder DivX

Encoder OpenDivX: codes
source video into DivX video

Goal: Rapid design of DivX
on MPSOC

Détection et
compensation

de Mvt

fDCT Quant

i fDCT

DeQuant

-

MPSOC’03 - 33Ahmed A. Jerraya

OpenDivX Design Step
Specification

g C++/MPI
g Validation 1: MPI/MPICH/LINUX
g Validation 2: MPI/SystemC

Architecture exploration
g Manual partitioning
g HL simulation

SW design: reuse of HL C++ code
HW design: use high performances architecture
model
HW-SW interfaces

g Multilevel co-simulation
g Automatic generation of HW-SW interfaces

Implementation
g Prototype, 4 processor ARM integrator

platform

Comm. Networks

SW
Comp.
SW

Comp. MFS
SW

Comp.
SW

Comp.
SW

Comp.

Comm. Networks

HW
Comp.

DivX
function

Abstract
communication: MPI

MPSOC’03 - 34Ahmed A. Jerraya

DivX Main Design Steps

DivX

MPI-API

MPICH/UNIX

1. Initial algorithm

DivX

MPI-API

MPI/SystemC

2. Same code on
SystemC

MPI/SystemC

D1

MPI
D2 D3

MPI MPI

D1

MPI

MPI/SystemC

D2

MPI

D3

MPI

D4

MPI

3. Same functions with different
partitionings

D1

MPI

Local Architectures

D2

MPI

D3

MPI

D4

MPI

HW wrappers

NoC

OS1 OS2 OS3 OS4

HAL1 HAL2 HAL3 HAL4 Memory
system

5. HW Adaptation generation 6. Implementation
- RTL design flow
- ARM integrator

D1

MPI

OS1 OS2 OS3 OS4

D2

MPI

D3

MPI

D4

MPI

TLM-API

NoC

4. Fixing Communication
Network/OS Generation

Memory
system

TLM-API
TLM/SystemC

MPSOC’03 - 35Ahmed A. Jerraya

Architecture for OpenDivX Encoder
Nexperia-like architecture

4-processor architecture : parallel execution of one master
processor and 3 slave processors
Point-to-Point communication networks
Application-specific DMA controller
Use of a double banc DRAM for local memories

Ctrl.

4-ch.
DMA
Ctrl.

Video
stream

P1DRAM

DRAM

ROM

C
tr

l P2

Wrapper

DRAM

DRAM

ROM

C
tr

l P3

Wrapper

DRAM

DRAM

ROM
C

tr
l P4

Wrapper

DRAM

DRAM

ROM

C
tr

l

Wrapper

D4

MPI

OS

CPU
architecture

HAL

MPSOC’03 - 36Ahmed A. Jerraya

DivX Summary

Initial specification uses HL communication interfaces to
accommodate different partitioning & different
communication networks.

Custom OS generation allows different implementation
of I/O, interrupts and resources management (different
local architectures).

HAL allows to accommodate different implementations
and different CPU

g RTL design flow
g ARM integrator platform

Key issues: multiple level validation and debug

MPSOC’03 - 37Ahmed A. Jerraya

Conclusion (1/2)

SoC design requires a heterogeneous components
interconnect scheme (CPU(s) + IP(s) + NoC)
HW/SW interfaces design is the bottleneck for MPSoC

g hard to master (Difficult to calibrate, Diversity,
Complexity)

g Application specific
g Non rewarding part of the design flow

HW-SW interfaces design may be automated:
g Virtual Architecture Model
g Custom OS/HAL to adapt SW
g Custom Bridge to Adapt Hardware

MPSOC’03 - 38Ahmed A. Jerraya

Conclusion (2/2)

HW-SW Interfaces in the case of DivX design
g Initial specification Parallel functions / MPI
g Abstract partitioning: architecture exploration
g Abstract OS/CPU/Bridges: performances tuning
g Separate the design of HW, SW and NoC
g Automatic Integration
g Ease SoC Debug and Validation.

Perspectives:
g HW-SW interfaces Debug and Test (2004)
g Partitioning HW/SW interfaces (2007)
g Computation/Communication Partitioning (2010)

MPSOC’03 - 39Ahmed A. Jerraya

Acknowledgement

Design modeling and Validation:
A.Dziri, L. Kriaa,, A. Moares W.Cesario

Custom OS Modeling Generation and Optimization:
A.Bouchhima, Y.Paviot, W.Youssef, I. Bacivarov, S.Yoo

Processor and memory interfaces generation:
F. Gharsalli, A. Agrasset, F. Rousseau,

System Prototyping on Multi-ARM Platform :
A.Sasongho, F.Rousseau

HW-SW Interfaces Debug:
F.Hunsinger,

DivX MPSoC:
W. Youssef, Marius Bonaciau, G. Majauskas, I. Petkrov,

A.Baghdadi

MPSOC’03 - 40Ahmed A. Jerraya

Readings about MP_SoC
1. D.E. Culler, J. Pal Singh, “Parallel Computer Architecture,” Morgan Kaufmann Publishers,

1999.
2. Oka and Suzuoki, “Designing and Programming the Emotion Engine,” IEEE Micro, vol. 19:6,

pp. 20-28, Nov/Dec 1999.
3. J. T. J. van Eijndhoven, al. "TriMedia CPU64 Architecture," ICCD, Austin, TX, 1999, pp. 586-

592.
4. K. Keutzer, “A Disciplined Approach to the Development of Platform Architectures,”

Synthesis and System Integration of Mixed Technologies, SASIMI, Nara, Japan, October 18 -
19, 2001. .

5. M. Sgroi, et al., “Addressing the System-on-Chip Interconnect Woes Through
Communication-Based Design,” Proc. of 38th Design Automation Conference, Las Vegas,
June 2001.

6. IBM Inc., Blue Logic Technology, http://www.chips.ibm.com/bluelogic/
7. D. Wingard, “MicroNetwork-Based Integration for SOCs,” Proc. of DAC, Las Vegas, June

2001.
8. J. A. J. Leijten et al., “PROPHID : A Heterogeneous Multi-Processor Architecture for

Multimedia,” Proc. of ICCD, 1997.
9. L. Benini, G. De Micheli, “Networks on chips: A New SoC Paradigm”, Computer, Vol. 35 No

1, pp. 70-78, January 2002.
10. K. Goossens, E. Rijpkema, P. Wielage, A. Peeters and J. van Meerbergen, “Networks on

Silicon: The next Design paradigm for systems on Silicon”, DATE 2002, Paris, France,
March 2002.

11. David E. Patterson, John L. Hennessy, “Computer Organization & Design - The
Hardware/Software Interface”, Morgan Kaufmann Publishers, 1998.

12. Andrew S. Tanenbaum, “Structured Computer Organization”, Prentice Hall, 4th ed., 1999.

MPSOC’03 - 41Ahmed A. Jerraya

Readings about Roses
1. W. CESARIO, al., "Component-Based Design Approach for Multicore SoCs", DAC'02, New

Orleans, USA June 10-14 2002.

2. S. Yoo, al. « A Generic Wrapper Architecture for Multi-Processor SoC Cosimulation and
Design », CODES, 2001.

3. W.O. Cesario, al. "Colif: a Multilevel Design Representation for Application-Specific
Multiprocessor System-on-Chip Design", IEEE Design & Test, Sept, 2001.

4. A. Baghdadi, al. « An Efficient Architecture Model for Systematic Design of Application-
Specific Multi-processor SoC », Design Automation and Test in Europe, March, 2001.

5. L. GAUTHIER, al., "Automatic Generation and Targeting of Application Specific Operating
Systems and Embedded Systems Software", TCAD, IEEE Transactions on Computer-Aided
Design, Vol. 20 Nr. 11, November 2001.

6. D. Lyonnard, al. “Automatic Generation of Application-Specific Architecture for
Heterogeneous Multiprocessor System-on-Chip”, DAC, June, 2001.

7. S. YOO, G. NICOLESCU, L. GAUTHIER, A.A. JERRAYA, "Automatic Generation Including
Fast Timed Simulation Models of Operating Systems in Multiprocessor SoC
Communication Design", DATE 2002, Paris, France, March 2002.

8. P. Gerin, al. « Scalable and Flexible Co-simulation of SoC Design with heterogeneous Multi-
processor Target Architecture », Asia South Pacific Design Automation conference,
January, 2001.

9. F. GHARSALLI, al., "Embedded Memory Wrapper Generation for Multiprocessor SoC",
DAC'02, June 10-14 2002, New Orleans, USA.

MPSOC’03 - 42Ahmed A. Jerraya

Reading about System Specification

1. A. Lee and A. Sangiovanni-vicentelli, A Denotational Framework for Comparing Models of
Computation, ERL Memorandum UCB/ERL-M97/11, University of California, Berkley, CA
94720, January 1997.

2. A. Jantsch, S. Kumar, A. Hemani, « The Rugby Model: A Metamodel for Studying Concepts
in Electronic System Design », IEEE Design & Test of Computers, 2000, p. 78-85.

3. D. D. Gajski, J. Zhu, R. Zömer, A. Gerstlauer, S. Zhao, SpecC Specification Language and
Methodology, Kluwer Academic Publishers, Boston, MA, ISBN 0-7923-7822-9, March 2000.

4. M. Sgroi, L. Lavagno, A.S. Vicentelli, « Formal Models for Embeded System Design », IEEE
Design & Test of Computers, vol. 17, no. 12, April-June 2000.

5. SystemC, available at http://www.systemc.org

6. R. Ernst, D. Ziegenbein, K. Richter, L. Teich, "Hardware/Software Co-Design of Embedded
Systems - The SPI Workbench," Proc. IEEE Workshop on VLSI'99, pp. 9-17, Orlando, 1999.

7. W.O. Cesario, al. "Colif: a Multilevel Design Representation for Application-Specific
Multiprocessor System-on-Chip Design", IEEE Design & Test, Sept, 2001.

MPSOC’03 - 43Ahmed A. Jerraya

Reading about Heterogeneous Systems
1. J.A. Rowson « Hardware/Software Co-simulation », proceeding Design Automation

Conference, 1994.

2. C.A. Valderrama, A. Changuel, P.V. Vijaya-Raghavan, M. Abid, T. Ben Ismail, A.A. Jerraya, "A
unified model for co-simulation and co-synthesis of mixed hardware/software systems",
European Design and Test Conference (EDAC-ETC-EUROASIC'95), Paris, France, March
1995.

3. L. Séméria and A. Ghosh, “Methodology for Hardware/Software Co-verification in C/ C++” ,
Proceeding of ASPDAC, 2001.

4. Seamless CVE, available at http://www.mentorg.com

5. C. Passerone, L. Lavagno, M. Chiodo, A. Sangiovanni-Vincentelli “Fast hardware/software co-
simulation for virtual prototyping and trade-off analysis”, in Proceedings of Design
Automation Conference, June, 1997

6. Coware, Inc. “N2C” , available at http : // coware.com/cowareN2C.html

7. S. Yoo, al. « A Generic Wrapper Architecture for Multi-Processor SoC Cosimulation and
Design », CODES, 2001.

8. P. Gerin, al. « Scalable and Flexible Co-simulation of SoC Design with heterogeneous Multi-
processor Target Architecture », Asia South Pacific Design Automation conference, January,
2001.

9. G. Nicolescu, S. Yoo, A.A. Jerraya, « Mixed-Level Cosimulation for Fine Gradual Refinement
of Communication in SoC Design », Design Automation and Test in Europe, mars, 2001.

MPSOC’03 - 44Ahmed A. Jerraya

