

A Roadmap to 65nm for EDA

Dr. Raul Camposano Senior Vice President, Chief Technology Officer Synopsys, Inc.

Semiconductor Process Flow

Main Drivers for IC Design

- Technology
 - Physics
 - Complexity
- Application
 - All
 - Communications (56%)
 - Computer (24%)
 - Consumer (21%)
 - Other Environment

- Power
- Heterogeneity
- Speed
- Size (cost)
- Reliability,

What Is Needed for 65nm and Below

- IP-based methodology
- Central data base
- Hierarchy
- Integrated verification environment
- Timing closure and signal integrity
- Low power design flow
- Analog design flow
- Build in chip-level self test
- Design for manufacturability
- Chip / package design

SoC Design

IP Based Methodology

IP Reuse

Pre-designed Blocks as % of an SoC

IP, Memory and SW Increasing

Source: Dataquest, 2000

From IP to Platform-Based Design

Central Data Base

Integrated Data

Liberty SDC TCL Scheme Verilog VHDL EDIF

SDF SPEF LEF DEF PDEF GDSII

Examples

Libraries: Logic, Layout

Logic: Loads

Parasitic: C, R. L

Physical: Wire length

Integrated Tools

Design Database

3rd Party Interfaces

Hierarchy

Approaches to Hierarchy

Top Down / Bottom Up

Virtually Flat

- Only top level is visible
- Block, macro and pin assignment quality poor without chip context
- All key operations use virtual flat view of chip
- Chip timing, routability and power can be analyzed and optimized

Main Tasks in Hierarchical Design

Ready For Physical Design

Integrated Verification Environment

System Level Design and Verification

- Bringing hardware and software together early in the design process
- Hardware synthesis from SystemC
 - RTL and behavioral
 - ASIC, SoC, FPGA

SystemVerilog Next Generation Verilog

- Concise design features
- C++ extensions
- Unified assertions
- Testbench capabilities
- Advanced APIs

RTL Design

Simulation Evolving Into DFV Platform

- Newer technologies attach to simulator
 - Testbenches Assertions Coverage Formal C++
- Verification technologies being native to simulator offers best performance
- Ease of adoption

Analog Mixed-Signal Verification

Formal Verification

- Equivalence Checking
- Property Checking
 - Assertions
 - Constraints

What is an Assertion (Constraint)?

Example

"After request is asserted, acknowledge will come 1 to 3 cycles later"

Assertions (constraints) capture designer assumptions and intent

Assertion Languages Are Very Efficient

Traditional HDL

```
always @(posedge req)
  begin
     repeat (1) @(posedge clk);
     fork: pos pos
        begin
           @(posedge ack)
           $display("Assertion Success",$time);
                 disable pos pos;
        end
       begin
          repeat (2) @(posedge clk);
          $display("Assertion Failure",$time);
          disable pos pos;
       end
     ioin
  end // always
```

Assertion-based HVL

```
clock posedge clk {
   event req_cycle: posedge req #[1..3] posedge
ack;
}
```

Assertions Enable Verification Automation

Assertions Constrain Exploding Verification State Space

Timing Closure and Signal Integrity

Process Technology <130nm Creates New Problems for Design Technology

- The primary physical effect of concern is cross-coupled capacitance plus the miller effect
 - Functional errors in analog circuitry or dynamic logic
 - Timing errors in static digital circuitry
- IR drop (static leakage and dynamic IR drop) handled in power
- Other important effects & features are inductance, CD variation, EM

Static Timing Analysis

Low Power Design Flow

Power Scaling

- Technology parameters from UMC roadmap
- V_t for high performance design / libraries
- Total switched capacitance grows from 600 pF/mm² to 2000pF/mm².
- Area scales down, function is the same.

Low Power Design Enablers

- Power modeling and analysis
- Clock gating and tree optimization
- Dynamic voltage scaling
- Power gating
- Leakage optimization using multi-Vt
- Modeling process variation
- Support asynchronous design

Analog Design Flow

Integrated Custom & Mixed-Signal Analog Design Tools

Built In Self Test (BIST)

Design for Test

Synopsys SoCBIST Solution

Design For Manufacturing

DFM

- Mask synthesis
- Dealing with variability
 - Statistical timing analysis
 - Physical design for yield / reliability

Mask Synthesis - RET

248nm Stepper

Evolution of RET

CD Variation Across a Wafer

Wafer Map for No-DPC Horizontal Isolated Structures

Incorporate analysis of timing variation into statistical timing analysis

Physical Design for Yield

- Multiple vias
- Wire spacing
- Wire width
- Limit current density
- •

IC / Package Co-Design

IC / Package Co-Design for Flip Chip

Lid

Chip

Package Pwr, Gnd Signal

Solder balls

Board

- Analyis
 - Extraction RLC
 - Simulation Spice
- Design
 - Package feasibility
 - Bump patterning, assignment
 - P/G assignment
 - Driver placement
 - Routing

Summary: 130 / 90 / 65nm Require Many Changes

- Methodology
 - IP, central data base, hierarchy
- Verification
 - Simulation, test benches, formal verification
- Design
 - Timing closure and signal integrity
 - Low power design flow
 - Analog design flow
 - Build in chip-level self test
 - Design for manufacturability
- Chip / package design