
Faraydon Karim
ST Microelectronics

La Jolla, CA
faraydon.karim@st.com



Faraydon Karim MPSoC’03

Outline

Motivation
Parametric Superscalar Architecture 
STARM Design
Performance
What work is left
Summary



Faraydon Karim MPSoC’03

Motivation
One Size doesn’t fit all.

Performance expectancies differ from 
system to another. The require different 
horse power from the processor 
In systems with multiple processors 

different performance and cost requirements 
exist



Faraydon Karim MPSoC’03

The Productivity Gap
Lo

gi
c T

ra
ns

ist
or

s p
er

 C
hi

p 

Pr
od

uc
tiv

ity
Tr

an
s ./

St
af

f -
Mo

nt
h

Logic Transistors/Chip

Transistor/Staff Month

58%/Yr. compound
Complexity growth rate

21%/Yr. compound
Productivity growth rate

Source:  
SEMATECH19

81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
03

20
01

20
05

20
07

20
09

xx x
x x

x

x

2.5µ

.10µ

.35µ

100M logic gates in 90 nm -> 1000 ARM7’s

1K

10K

100K

1M

10M

100M

1B

10B

10

100

1K

10K

100K

1M

10M

100M



Faraydon Karim MPSoC’03

Three Opposing Factors

Productivity

Gap

Fast Time to Market

Processor with various cost/performance

What the Solution?



Faraydon Karim MPSoC’03

The Solution

We Need a design tool that allows a 
parametric entries

We need a parametric microarchitecture 



Faraydon Karim MPSoC’03

Design Tool

We used SystemC
It is high level and for any design block we 
can make it as a struct.
Each struct can be parameterized. Can be 
replicated us many times us desired. 
(Physical limitations must be considered)
SystemC is also synthesizable.

The tool is there



Faraydon Karim MPSoC’03

The Microarchitecture

The most complicated part of the 
processor is the control logic. 

If it is build parametrically the rest becomes 
easy

The data dependency is also causes 
interlocking among various parts of 
design



Faraydon Karim MPSoC’03

Microarchitecture

Superscalar performance is based on two 
major factors:

Code parallelism
Code must be able to supply data and instruction to 
utilize all the resources in efficient way

Microarchitecture that can solve
Data dependencies such as WAW, WAR, & 
RAW
Solve control dependencies by predicting and 
anticipating
Out of Order Execution to cover data dependency 
penalties
Other techniques



Faraydon Karim MPSoC’03

performance

Technology
Implementation

Architecture

Performance =  
Application

# Instructions

X
# Instructions

Cycles
X

Cycles

Second



Faraydon Karim MPSoC’03

Data Dependencies 

K-Table is made of a number of entries each 
dedicated for on instruction issued. It is 
initialized by the pointer to the rename register.

A machine with n instruction issue requires
n entry in the K-Table

A processor with J number of pipe line stages 
requires J number of K-Tables

Logical
Register

Physical
Register Flags

K-Table

Total Rename Registers = J X n

Solving WAW & WAR



Faraydon Karim MPSoC’03

Data Dependencies -2

Register File & Renaming

Dirty BitData Bits

Each entry in the register File
is associated with a dirty bit
When the bit is on means the datum 
is not there. when the data gets ready it turns
off. Thus RAW problem is solved.

This technique makes controls 
simple and scales with zero
control complexity

GPR and Rename is mixed. There is no need 
for multiple data transfers and GPR ordering

u-Arch



Faraydon Karim MPSoC’03

 Counter
PC

 
0
1
2 Instruction 1 Instruction 0 0
3 1
4 2
5 3

: : : :
: : : :

31
 Counter

0
0

0 0 1
1 2

3
1 0  : : : : : :

1 : : : : : :
0 32

2 0 1 33
1 2 34

3 1 35
3 0 : : : : 36

1 : : : : 37
31 38

4 0 39
1 40

41
5 0 42

1 43

Control Word 1 Control word 0

K- Tables



Faraydon Karim MPSoC’03

The Result
Highly Efficient Superscalar with no 
complex control logic

Easy design

The Parameter are measurable there 
will be no guess work

Using simple equations for decision making

Create execution units independent of 
control logic

Allows for scaling and free addition or deletion of 
units



Faraydon Karim MPSoC’03

Nano-Processor Programming Model

Register
File

Control 
Store System

Registers

ALU

Decode Unit

Special
Hardware

Branch
Processor

Load/
Store

Search
Engine

Multithread
buffers

Special
Hardware

Special
Hardware

Special
Hardware

Special
Hardware

Data
Buffer

Circular buffer 
Addressing



Faraydon Karim MPSoC’03

Platform Processor

ISAu-Arch

Nano-Proc

Proc 1 Proc 2 Proc 3

Processor 
Platform

Processor 
Instance

Spock

ARM

MIPS

LX …

Simple Scalar

Super Scalar

VLIW

DSP

#Issue: 2 
#Exec:  2

#Issue: 4 
#Exec:  4

#Issue: 4 
#Exec:  5



Faraydon Karim MPSoC’03

Platform Processor

Control Word 
(CW)

ISA

Native to CW

I Queue

Exec. #1 Exec. #2 Exec. # n

Processor 
Instance

Spock

ARM

MIPS

LX …

Exec.  delta



Faraydon Karim MPSoC’03

STARM



Faraydon Karim MPSoC’03

Superscalar ARM

Stage - 6

Pre-
Fetch Fetch

Decode

K-table
LAS
Q

EXU
Q

EXEC

Load/
Store

W/B

ARM Instruction
Words (32-bits)

Command
Words (140+ bits)

Stall

RGF

Stage - 1

Prefetch

Stage - 2

Fetch/Branch

Stage - 3

Decode/Rename

Stage - 4

Instr. Queue

Stage - 5

Execution Writeback



Faraydon Karim MPSoC’03

Verification Complexity
Verification is divided to three levels:

Architectural Verification Program(IVP)
Verifies all the instructions and architectural 
parts that are observable

Implementation Verification Program (IVP)
All the testcases that were written for one block 
was capable to run on all the similar block in 
any combination.

Minimum development required 
Need improvements

Application Verification Program (AVP)



Faraydon Karim MPSoC’03

Instruction Distribution-IPC             
( Instruction count from armsd)

0
10
20
30
40
50
60
70
80

dijk
stra

dhyrsone

FFT

jpeg
susan sha

0
10
20
30
40
50
60
70
80
90

Load/Store Branch EXU IPC



Faraydon Karim MPSoC’03

Instruction Distribution –IPC 
(Instrumented from model)

0
10
20
30
40
50
60
70
80

qsort
dijk

stra
dhyrsone

FFT

jpeg
susan sha

0
10
20
30
40
50
60
70
80
90
100

Load/Store
Branch
EXU
IPC



Faraydon Karim MPSoC’03

Comparison

0

0.5

1

1.5

2

2.5

3

qsort dijkstra FFT jpeg susan sha

ST-ARM
Alpha-ARM
Xscale



Faraydon Karim MPSoC’03

ST-ARM – OTHER ARM IPC

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

FFT Dijkstra dhrystone

ARM 710
ARM 920T
STRONG ARM
XSCALE
ST ARM (Instr IPC)
STARM (armsd ipc)



Faraydon Karim MPSoC’03

What we added is a Fluid-IP

Silicon

Gate-Level

RTL / u-Arch

Architecture

Functional

Abstraction
Layer

Modeling
Type

Circuit

Boolean

Cycle-based

Processes

Functional

Re-use
Model

Hard-IP

Logic-IP

Soft-IP

Fluid-IP

Functional



Faraydon Karim MPSoC’03

Conclusion
Combination of tool and and parametric 
architecture created a Fluid-IP.
Fluid-IP gives the user ability to rapidly 
develop any variance of processor with 
minimum cost.
Fluid-IP is fast path to the Market.
Parametric Verification process requires 
more research. 


