
Challenges and
opportunities for
FPGAs
Ivo Bolsens

XilinxJuly 2003, MPSOC2003 2

FPGAs ride the tide of Moore’s Law

1999 2000 2002 2003 2004 2005

65 nm
90 nm

130 nm

150 nm

180 nm

45 nm

2001

300 mm copper wafers200 mm wafers

SIA Roadmap

Virtex-EM

Virtex-II

Virtex-II Pro

Spartan-3
FPGA Roadmap

XilinxJuly 2003, MPSOC2003 3

150nm / 200mm ASICs

ASICs buck the tide

Production Volume

Co
st

90nm/300nm ASICs

150nm / 2
00mm FPGAs

90nm / 300mm FPGAs

FPGA Cost Advantage ASIC Cost AdvantageFPGA Cost Advantage ASIC Cost AdvantageFPGA Cost Advantage

XilinxJuly 2003, MPSOC2003 4

Future proof FPGA architecture

λ λ/2

+ +

+ +

+ ++ +
+ ++ +
+ ++ +
+ ++ +

store

store

λ/2

++ + +

++ + +
++ + +

++ + +

Tconnect (nsec) - ρ.l /λ2 2
V /λ

3 3
Heat/area

Courtesy :IMEC

XilinxJuly 2003, MPSOC2003 5

Microprocessor
The only circuitry which

supports “useful operations”
All the rest is overhead
to support the time multiplexing
and data transfer/storage

fproc = 450 MHz
= 900 MOPS

f = 300MHz
= 150 BOPS
fpga

Source : Bob Broderson

XilinxJuly 2003, MPSOC2003 6

Redefining FPGA

Logic Cells

125K
105K

Block RAM

10Mb

3Mb

Multipliers

556

168

3.125Gb/s
MGTs

424

PowerPC
CPUs

840Mb/s
LVDS

340

442

XC2VP125XC2V8000

XilinxJuly 2003, MPSOC2003 7

Virtex-II Pro Programmable
System Platform

Industry standard
PowerPC Processors

Up to 4 processors
600 DMIPs at 400 MHz

RocketIO High-speed
Serial Transceivers
Up to 24 transceivers
622 Mbps to 3.125 Gbps

XilinxJuly 2003, MPSOC2003 8

Platform Design Concept

TM

Arbiter

Interrupt
Controller

UART

Local
OPB
Bus

Local
OPB
Bus

32-Bit RISC
130nm Process
300+ MHz Core

420 D MIPS

PPC 405

32-Bit RISC
130nm Process
300+ MHz Core

420 D MIPS

PPC 405

CoreConnect
Technology

TM

XilinxJuly 2003, MPSOC2003 9

• Hardwired CPUs
• Softwired CPUs
• Configurable CPUs
• Softwired Logic
• Hardwired Logic
• Reconfigurable Logic
• RAM

The System Components
• Busses
• Networks
• Reconfigurable

interconnect
• Input / Output

XilinxJuly 2003, MPSOC2003 10

Sy
st

em
 P

er
fo

rm
an

ce

Time

Serial Connectivity TrendSerial Connectivity Trend

PCI64/66, PCI-X 133...

Serial I/OSerial I/O
Clock Data RecoveryClock Data Recovery

PointPoint--toto--PointPoint
SwitchedSwitched

Parallel I/OParallel I/O
Source SynchronousSource Synchronous

PointPoint--toto--PointPoint
SwitchedSwitched

Parallel I/OParallel I/O
Shared ClockShared Clock
Shared BusShared Bus

< 33MHz

ISA, PCI32/33...

Device Device Device Device

Device Device Device Device

Device

Device

Device

BridgeBridge Device Device

< 1GHz
Device Device

Switch Fabric

DeviceDevice

RapidIO™, OIF SPI4.1/4.2...

InfiniBand™, 3GIO…
SerialRapidIO

< 133MHz

Device Device

Switch Fabric

DeviceDevice

> 1GHz

XilinxJuly 2003, MPSOC2003 11

Creating Complete System
Solutions

Gb Ethernet
(1000BaseLX/SX/CX)

TCP/IP Stack
on PowerPC

4
Transport

3
Network

TCP

IP

M
A

CLink Layer in
FPGA Logic
(GbE MAC)

2
Link

MAC
RocketIO is PHY

(1000Base-SX/LX)
1

Physical
PHY

OSI TCP/IP

6
Presentation

5
Session

7
Application

ftp
telnet
rlogin
mail
etc

Upper Layers
on PowerPC

XilinxJuly 2003, MPSOC2003 12

XilinxJuly 2003, MPSOC2003 13

The “Virtex Vortex”

VirtexVirtex
SRAMSRAM MCUMCU

SERDESSERDESDSPDSP

IPIP

IPIP IPIP

IPIP

XilinxJuly 2003, MPSOC2003 14

Board-level ancestry

• Microprocessor is
primary functional
component on board

• FPGAs may be
– secondary functional

components (e.g. for
accelerators, interfacing)

– or just tertiary functional
components (e.g. for
glue logic, prototyping)

Microprocessor

FPGAs

XilinxJuly 2003, MPSOC2003 15

System Exploration in Platform
FPGA

Line

Coding

Data

Format

Payload

Qualify

Payload

Assembly
Tx

Line

Decoding

Data

Alignment

Payload

Quality

Payload

Buffer
Rx

System

Interfaces

Bus

System

Line

System

Payload

Processing

XilinxJuly 2003, MPSOC2003 16

Board Architecture

CPMU-Bus

Other Peripherals

Processor

µP Bus
System

PCI Bus
System

PCI Bridge
Device

RAM

FLASH

EEPROM

G704
Framer

AAL5
Processor

Memory
Interface

G703
LIU

MPC860

Generic Design

CPM = Communications Processor Module

Tx

Rx

Line
Coding

Data
Format

Line
Decoding

Data
Alignment

Payload
Qualify

Payload
Quality

Payload
Assembly

Payload
Buffer

Payload
Processing

System
Interfaces

XilinxJuly 2003, MPSOC2003 17

Communication Bottleneck

Motorola PowerQUICC

CPMU-Bus

Other Peripherals

Processor

µP Bus
System

PCI Bus
System

PCI Bridge
Device

RAM

FLASH

EEPROM

G704
Framer

AAL5
Processor

Memory
Interface

G703
LIU

MPC860

Generic Design

CPM = Communications Processor Module

Tx

Rx

Line
Coding

Data
Format

Line
Decoding

Data
Alignment

Payload
Qualify

Payload
Quality

Payload
Assembly

Payload
Buffer

Payload
Processing

System
Interfaces

Data
Direction

XilinxJuly 2003, MPSOC2003 18

Optimized Architecture

Other Peripherals

PowerPC
Processor

µP Bus
System

PCI Bus
System

PCI Bridge
Device

RAM

FLASH

EEPROM

G704
Framer

MicroB
Processor

Memory
Interface

G703
LIU

Generic Design
FPGA Boundary

Tx

Rx

Line
Coding

Data
Format

Line
Decoding

Data
Alignment

Payload
Qualify

Payload
Quality

Payload
Assembly

Payload
Buffer

Payload
Processing

System
Interfaces

Dual Port
Block
RAM

Fast I/F
FIFO

XilinxJuly 2003, MPSOC2003 19

Eases Bus Bandwidth

Other Peripherals

PowerPC
Processor

µP Bus
System

PCI Bus
System

PCI Bridge
Device

RAM

FLASH

EEPROM

G704
Framer

MicroB
Processor

Memory
Interface

G703
LIU

Generic Design
FPGA Boundary

Tx

Rx

Line
Coding

Data
Format

Line
Decoding

Data
Alignment

Payload
Qualify

Payload
Quality

Payload
Assembly

Payload
Buffer

Payload
Processing

System
Interfaces

Dual Port
Block
RAM

Fast I/F
FIFO

XilinxJuly 2003, MPSOC2003 20

Data Processing Efficiency

I-CacheI-Cache

D-CacheD-Cache

C
oreC

onnect PLB
C

oreC
onnect PLB

Peripherals,
Off-Chip Mem,
etc.

Peripherals,
Off-Chip Mem,
etc.

PowerPC
405 Core
PowerPC
405 Core

OCMOCM

Dual-
Port

BRAM

Dual-
Port

BRAM

Dual-
Port

BRAM

Dual-
Port

BRAMFPGA
Fabric
FPGA
Fabric

FPGA
Fabric
FPGA
Fabric

Frequently accessed
Data / Instructions
stored in Cache

Frequently accessed
Data / Instructions
stored in Cache

Streaming Data
stored in OCM to
avoid Cache pollution

Streaming Data
stored in OCM to
avoid Cache pollution

XilinxJuly 2003, MPSOC2003 21

XilinxJuly 2003, MPSOC2003 22

Shrink to single chip

• Two ways of interpreting board to chip mapping:
– Microprocessor with embedded programmable logic

• Natural shrinkage of board-level model
• Example: possible use of embedded FPGA in SoC

– Programmable logic with embedded microprocessor(s)
• Platform FPGA: inversion of board-level model
• Example: PowerPC(s) in Xilinx Virtex-II Pro
• However, still open to processor-centric interpretation

XilinxJuly 2003, MPSOC2003 23

Question

• Other creative ways to use
– Concurrency
– Programmability
– Interconnect topology

• YES : Interface centric

XilinxJuly 2003, MPSOC2003 24

ZBT SSRAMZBT SSRAM
DDR SDRAMDDR SDRAM

Ar
bi

te
r Arbiter

Bus
Bridge On-Chip Peripheral BusProcessor Local Bus

PowerPC
405 Core

Instruction Data

DCR Bus

On-Chip
Peripheral

On-Chip
Peripheral

On-Chip
Peripheral

Hi-Speed
Peripheral

Hi-Speed
Peripheral

e.g.
Memory

Controller

OPBPLB

SDRAMSDRAM

Dedicated Hard IP Flexible Soft IP

Off-Chip
Memory

Processor Use Models

• Processor runs from BRAM
only

• No external pins, no RTOS, no
peripherals

• Typical use:
packet processing,
control functions

• Processor runs from large external
memory

• CoreConnect bus structure,
peripherals

• Typical use: running embedded
software applications on RTOS

PowerPC
405

FPGA Fabric

BRAM

Buried Processor Embedded Computing

Data
Processing

Path

BRAM

Data Path
Control

XilinxJuly 2003, MPSOC2003 25

Interface-centric architecture
• Is appropriate for reactive systems - highly relevant

for future ambient intelligence/ubiquitous computing
– ‘Dissapearing computer’

• Processors have no special status in systems, and
play only a secondary role as ‘function units’

• Explicit ‘hardware-software co-design’ becomes
lesser issue - certainly no top-level partitioning

• Hardware accelerators of processor-centric model
are inverted and replaced by ‘software decelerators’

XilinxJuly 2003, MPSOC2003 26

Software decelerators

• Processor executes software to perform one or more
services for programmable logic

• Termed a ‘decelerator’ because execution is likely to
be slower than for a logic-based implementation

• Rationale for use includes:
– speed only has to be adequate to meet system deadlines
– may save chip real estate and/or energy overall
– potential simplification of implementation

XilinxJuly 2003, MPSOC2003 27

Network processing

= DSP
– Dataflow
– Interface driven

= Dataprocessing
- complex data structures
- irregular processing

<> Lightweight processing

XilinxJuly 2003, MPSOC2003 28

Example:Gigabit packet processor

• Four-port mixed-version IPv4 and IPv6 packet router
implemented on single Virtex-II Pro chip

• Goal: 80% of packets handled entirely in the
programmable logic, with zero latency

• PowerPC just used as an assistant to handle
infrequent or unexpected types of packets

• Could dynamically change assignment of functions
to logic or to program during system operation to
reflect changes in packet traffic profile

XilinxJuly 2003, MPSOC2003 29

PowerPC
405 Core

(Secondary
Processing)

PowerPC
405 Core

(Secondary
Processing)O

C
M

 In
te

rf
ac

e
O

C
M

 In
te

rf
ac

eDual Port
Packet
Memory

Dual Port
Packet
Memory

OCM
(BRAM)
OCM

(BRAM)FPGA
Fabric
FPGA
Fabric

Primary
Packet

Processing
Logic

Primary
Packet

Processing
Logic

All Packets stored
in Dual-Port Memory

80% IPv4 Packets
handled by logic

20% IPv6 Packets
handled by PowerPC

Streaming
Data

Optimal HW / SW partitioningOptimal HW / SW partitioning
FPGA logic handles common caseFPGA logic handles common case
PPC core handles exceptionsPPC core handles exceptions

OCM interface allows single cycle OCM interface allows single cycle
access to BRAMaccess to BRAM

Application Specific Memory

XilinxJuly 2003, MPSOC2003 30

Processor Centric

Rocket
IO

Rocket
IO

Rocket
IO

Rocket
IO

Packet
Handler

Packet
Handler

Packet
Handler

Packet
Handler

Instruction
OCM (4Kb)

Data
OCM (4Kb)PPC 405

31.25Hz

300MHz

Buffer
OCM\
(2x2Kb)

Buffer
OCM\
(2x2Kb)

Buffer
OCM\
(2x2Kb)

Buffer
OCM\
(2x2Kb)

Device Control Register Chain Device Control Register Chain

Port1 Port2 Port3 Port4

Dual port buffer

Source : Gordon Brebner, FCCM 2002

HUB

200% overhead for moving packets between ports and hub

XilinxJuly 2003, MPSOC2003 31

Interface Centric

Rocket
IO

Rocket
IO

Rocket
IO

Rocket
IO

Packet
Handler

Packet
Handler

Packet
Handler

Packet
Handler

4x Get buffer
OCM (2Kb)

4x Get buffer
OCM (2Kb)

4x Get buffer
OCM (2Kb)

4x Get buffer
OCM (2Kb)

4x Get buffer
OCM (2Kb)

Instruction
OCM (4Kb)

Data
OCM (4Kb)PPC 405

CoreConnect (PLB to OPB to DCR)

31.25/62.5MHz

300MHz

Source : Gordon Brebner, FCCM 2002

XilinxJuly 2003, MPSOC2003 32

Example: address lookup

• Need IP packet address lookup within schedule
imposed by zero-latency logic-based packet handling

• Direct logic implementation, or indirect logic
implementation using CAM, is possible but
expensive in terms of resources used

• Software decelerator option is to use more
sophisticated algorithms and data structures
implemented on a processor, while also minimizing
logic/processor interface overheads

XilinxJuly 2003, MPSOC2003 33

Lookup results

• In the case study, have 240 ns to perform lookup
• Using a hashing algorithm programmed in C on

an embedded PowerPC, can perform a lookup
within 164 ns for 99.5% of cases

• With more subtle memory management for the
hash table, and careful implementation, expect
average lookup in about 30 ns, with less than
0.0001% chance of not completing within 240 ns

XilinxJuly 2003, MPSOC2003 34

Example: finite state machines

• Use of software decelerators to implement a
general class of sequentialized functions that are
ubiquitous and recognizable in digital designs

• Processor has to determine next state and state
outputs to meet schedule determined by logic-
based system including the state machine

• As long as overall schedule is met, decelerator
might support multiple state machines

XilinxJuly 2003, MPSOC2003 35

Processor implications

• Maximizing clock rates may not be crucial
• Internal brute-force concurrency might also be eliminated,

giving simpler instruction execution
• Closer integration of i/o channels with internal datapath

can reflect interface-centricity of system
• No need for continuous fetch-execute cycles
• Support for polling instead of interrupt handling
• In short: more like a programmable function unit
• Soft processors offer scope for specialized tailoring

XilinxJuly 2003, MPSOC2003 36

Multiple processor implications

• With conventional processor-centric view:
– the multiple centers of control lead towards all the

complications of parallel supercomputers
– multi-processor programming models needed

• However, with logic-centric view:
– processors do not interfere with each other directly, so

no extra synchronization or programming issues
– essentially just replicated function units, which is

already well-understood for programmable logic

XilinxJuly 2003, MPSOC2003 37

System architecture implications

• Interface-centric view removes processor behavior
and needs as a main architectural driver

• In particular:
– shared buses are less likely to feature, since serialized

processor behavior is dominated by potentially highly-
concurrent behavior

– control is decentralized with no inherent hot spots
– programmable logic can be sized, organized and located

to match best the interfaces, not the processor(s)

XilinxJuly 2003, MPSOC2003 38

System design options
• Option 1: follow conventional hardware design

process - problem is how to identify good functions
to be executed by a processor instead of logic

• Option 2: follow conventional hardware/software
co-design process - problem is that processors /
software are given too high status in the system

• Option 3: devise a revised design process, aimed
at the unique overall capabilities of new platform
FPGAs - this is currently an active research area

XilinxJuly 2003, MPSOC2003 39

XilinxJuly 2003, MPSOC2003 40

Self-reconfiguring platform
(SRP)

PowerPC

Dual-port
Block
RAM

CoreConnect OPB

Control
Logic

ICAP

FPGA
Configuration

Memory

Source : Brandon Blodget et al, DATE 2003

XilinxJuly 2003, MPSOC2003 41

Self-reconfiguring integrated
switch

• 928x928 switch
• Fully integrated solution using ICAP
• One PowerPC dedicated to

reconfiguration control via ICAP
• >155Mbps/channel
• 144Gbps througput

XilinxJuly 2003, MPSOC2003 42

Potential Applications
• Ethernet configuration
• Relocate, swap, cut and paste hardware modules
• “Intelligent” relocatable modules
• Memory mapped access to reconfigurable elements
• Testing (design, built in self test, etc)

XilinxJuly 2003, MPSOC2003 43

XilinxJuly 2003, MPSOC2003 44

 ANSI C
code (with
tags)

“ProWare”

 ProWare ProWare

 Domain-Specifc
 3rd Party Tools
 & IP

 E
DK

 P
lat

for
m

Te
ch

no
log

y

 ProWare library

 Hardware

 Processor

 C
or

eC
on

ne
ct

™
 B

us
(e

s)

 FSL

 FSL

 FPGA
 Multiple processors

 Multiple HW components

 Hardware

 Hardware

 Processor

XilinxJuly 2003, MPSOC2003 45

FSL & Bus: Complementary

• FSL provides:
– Unidirectional point to point

communication
– Unshared non-arbitrated

communication mechanism
– Best for pipelining / data plane

processing
• Bus provides:

– Shared resource usage
• Memory
• Slow peripherals

– Addressed-mapped devices

• Use of both/either provides:
– Support for any imaginable data

flow requirements
– Match interconnect architecture

to data flow requirements of
user program

– Supports any arbitrary
connection topology

• Star topology
• Pipelined unidirectional flow

network
• Bi-directional flow
• Ring topology etc.

XilinxJuly 2003, MPSOC2003 46

ProWare Use Case:

Single Processor

• Use software functions from ProWare Library
• Profile/simulate to find hot spots in code

 #include “xilprowarelib.h” // ProWare Library
 extern int input[64];
 extern void process_2dct(int *);
 int output[64], temp[64];
 int main () {
 int temp1[64], temp2[64];
 idct1d(input, temp1); // from xilprowarelib.h
 matrix_transpose(temp1, temp2); // from xilprowarelib.h
 idct1d(temp2, output); // from xiltags.h
 process_2dct(output); // user’s function
 }

 ProWare ProWare
 Local Memory

 Bus (LMB)

 MicroBlaze
 Processor

 FPGA

 Multiple processors

 E
DK

 P
lat

for
m

Te
ch

no
log

y

XilinxJuly 2003, MPSOC2003 47

ProWare Use Case:

Co-Design Only

• Calls to idct1d and matrix_transpose become calls to driver code that
writes parameters to HW and reads results from HW

• Tags are macros: compile with no side effects on any ANSI C compiler

 #include “xilprowarelib.h” // ProWare Library header file
 // Defines idct1d to be a PE and define port widths
 XIL_PE idct1d(XIL_INPUT in[64], XIL_OUTPUT out[64]);
 // Define matrix_transpose to be a PE and port widths
 XIL_PE matrix_transpose (XIL_INPUT[64],
XIL_OUTPUT[64]);
 extern int input[64];
 extern void process_2dct(int *);
 int output[64], temp[64];
 int main () {
 int temp1[64], temp2[64];
 idct1d(input, temp1); // from xilprowarelib.h
 matrix_transpose(temp1, temp2); // from xilprowarelib.h
 idct1d(temp2, output); // from xilprowarelib.h
 process_2dct(output); // user’s function
 }

 ProWare ProWare

 LMB

 MicroBlaze
 Processor

 FPGA

 E
DK

 P
lat

for
m

Te
ch

no
log

y
 idct1d Matrix

 Transpose

OPB

XilinxJuly 2003, MPSOC2003 48

ProWare Use Case:

Change Connectivity

• Calls to idct1d and matrix_transpose become calls to driver code that
writes parameters to HW and reads results from HW

• Tags are macros: compile with no side effects on any ANSI C compiler

 ProWare ProWare

 LMB

 MicroBlaze
 Processor

 FPGA

 E
DK

 P
lat

for
m

Te
ch

no
log

y

 idct1d Matrix
 Transpose

FSL0 FSL1
FSL2

FSL3

#include “xilprowarelib.h” // ProWare Library header file
// Defines idct1d to be a PEand defines the port widths
XIL_PE idct1d (XIL_INPUT in[64], XIL_OUTPUT out[64]);
// Define matrix_transpose to be a PE and define port widths
XIL_PE matrix_transpose (XIL_INPUT in[64], XIL_OUTPUT out[64]);
// Defines idct1d inst0 to be a HWPE with its ports mapped to fsl0
// of type FSL for the inputs and fsl1 of type FSL for the outputs
XIL_PEINST(idct1d, inst0, XIL_HWPE, XIL_PORTMAP(
XIL_FSLIN(fsl0), XIL_FSLOUT(fsl1)))
// Defines matrix_transpose inst0 to be a HWPE with its ports
// mapped to fsl2 of type FSL for the inputs and fsl3 of type FSL for
// the outputs
XIL_PEINST(matrix_transpose, inst0, XIL_HWPE,
XIL_PORTMAP(XIL_FSLIN(fsl2), XIL_FSLOUT(fsl3)))
extern int input[64];
extern void process_2dct(int *);
int output[64], temp[64];
int main () {
int temp1[64], temp2[64];
idct1d(input, temp1); // from xilprowarelib.h
matrix_transpose(temp1, temp2); // from xilprowarelib.h
idct1d(temp2, output); // from xilprowarelib.h
process_2dct(output); // user’s function

XilinxJuly 2003, MPSOC2003 49

ProWare Use Case:

Co-Design + Multiprocessing

Write data to FSL0

Driver call

Driver calls
Do nothing

User code

Main automatically
generated. Read
input from FSL 2,
and call
process_2dct

 void idct1d_inst0(int *in, int *out) {
 int i;
 for (i = 0; i < 64; i++) {
 XilWriteFsl(in[i]);
 }}
 int main () {
 int temp1[64], temp2[64];
 idct1d_inst0(input, temp1);
 matrix_transpose(temp1, temp2);
 idct1d_inst1(temp2, output);
 process_2dct(output);
 }

 void process_2dct(int *in) {
 :
 }
 int main () {
 int in[64], i;
 while (1) {
 for (i = 0; i < 64; i++) {
 XilReadFsl(in[i]);
 }
 process_2dct(in);
 }

 LMB

 MicroBlaze
 main()

 FPGA

 Idct1d
 inst0

 Matrix
 Transpose

FSL0 FSL1 FSL2 FSL3
 Idct1d
 inst1

 LMB

 MicroBlaze
 process_2dct()

XilinxJuly 2003, MPSOC2003 50

XilinxJuly 2003, MPSOC2003 51

Platform FPGAs circa 2005

50 Million System Gates
1.6 Billion Transistors on 1 Chip!!
Hard & Soft IP Blocks
1GHz Embedded Processor
Mixed Signal IP
40Gbps I/O Capability

50 Million System Gates50 Million System Gates
1.6 Billion Transistors on 1 Chip!!1.6 Billion Transistors on 1 Chip!!
Hard & Soft IP BlocksHard & Soft IP Blocks
1GHz Embedded Processor1GHz Embedded Processor
Mixed Signal IPMixed Signal IP
40Gbps I/O Capability40Gbps I/O Capability

XilinxJuly 2003, MPSOC2003 52

Conclusions

• FPGA is a programmable system platform
• Focus on overall system cost reduction
• New use models for HW and SW : the Interface Centric

model
• Software deceleration versus Hardware acceleration
• Runtime reconfigurable architecture through Internal

Configuration Access Port (ICAP)
• Challenge is Design Environment

