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FPGAs ride the tide of Moore’s Law
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150nm / 200mm ASICs

ASICs buck the tide 
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Future proof FPGA architecture
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Microprocessor
The only circuitry which

supports “useful operations”
All the rest is overhead 
to support the time multiplexing
and data transfer/storage 

fproc = 450 MHz
= 900 MOPS

f = 300MHz
= 150 BOPS
fpga

Source : Bob Broderson
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Redefining FPGA
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Virtex-II Pro Programmable 
System Platform

Industry standard 
PowerPC Processors

Up to 4 processors
600 DMIPs at 400 MHz

RocketIO High-speed 
Serial Transceivers
Up to 24 transceivers
622 Mbps to 3.125 Gbps
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Platform Design Concept
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• Hardwired CPUs
• Softwired CPUs
• Configurable CPUs
• Softwired Logic
• Hardwired Logic
• Reconfigurable Logic
• RAM

The System Components
• Busses
• Networks
• Reconfigurable 

interconnect
• Input / Output
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Creating Complete System 
Solutions

Gb Ethernet 
(1000BaseLX/SX/CX)
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The “Virtex Vortex”
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Board-level ancestry

• Microprocessor is 
primary functional 
component on board

• FPGAs may be
– secondary functional 

components (e.g. for 
accelerators, interfacing)

– or just tertiary functional 
components (e.g. for 
glue logic, prototyping)

Microprocessor

FPGAs
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System Exploration in Platform 
FPGA
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Board Architecture
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Communication Bottleneck
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Optimized Architecture
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Eases Bus Bandwidth
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Data Processing Efficiency
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Shrink to single chip

• Two ways of interpreting board to chip mapping:
– Microprocessor with embedded programmable logic

• Natural shrinkage of board-level model
• Example: possible use of embedded FPGA in SoC

– Programmable logic with embedded microprocessor(s)
• Platform FPGA: inversion of board-level model
• Example: PowerPC(s) in Xilinx Virtex-II Pro
• However, still open to processor-centric interpretation
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Question

• Other creative ways to use
– Concurrency
– Programmability
– Interconnect topology

• YES : Interface centric
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Processor  Use Models

• Processor runs from BRAM 
only

• No external pins, no RTOS, no 
peripherals

• Typical use:
packet processing,
control functions

• Processor runs from large external 
memory

• CoreConnect bus structure, 
peripherals

• Typical use: running embedded 
software applications on RTOS
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Interface-centric architecture
• Is appropriate for reactive systems - highly relevant 

for future ambient intelligence/ubiquitous computing
– ‘Dissapearing computer’

• Processors have no special status in systems, and  
play only a secondary role as ‘function units’

• Explicit ‘hardware-software co-design’ becomes 
lesser issue - certainly no top-level partitioning

• Hardware accelerators of processor-centric model 
are inverted and replaced by ‘software decelerators’
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Software decelerators

• Processor executes software to perform one or more 
services for programmable logic

• Termed a ‘decelerator’ because execution is likely to 
be slower than for a logic-based implementation

• Rationale for use includes:
– speed only has to be adequate to meet system deadlines
– may save chip real estate and/or energy overall
– potential simplification of implementation
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Network processing

= DSP
– Dataflow
– Interface driven

= Dataprocessing
- complex data structures
- irregular processing

<> Lightweight processing
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Example:Gigabit packet processor

• Four-port mixed-version IPv4 and IPv6 packet router 
implemented on single Virtex-II Pro chip

• Goal: 80% of packets handled entirely in the 
programmable logic, with zero latency

• PowerPC just used as an assistant to handle 
infrequent or unexpected types of packets

• Could dynamically change assignment of functions 
to logic or to program during system operation to 
reflect changes in packet traffic profile
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Processor Centric
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Interface Centric

Rocket
IO

Rocket
IO

Rocket
IO

Rocket
IO

Packet
Handler

Packet
Handler

Packet
Handler

Packet
Handler

4x Get buffer
OCM (2Kb)

4x Get buffer
OCM (2Kb)

4x Get buffer
OCM (2Kb)

4x Get buffer
OCM (2Kb)

4x Get buffer
OCM (2Kb)

Instruction 
OCM (4Kb)

Data 
OCM (4Kb)PPC 405

CoreConnect (PLB to OPB to DCR)

31.25/62.5MHz

300MHz

Source : Gordon Brebner, FCCM 2002
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Example: address lookup

• Need IP packet address lookup within schedule 
imposed by zero-latency logic-based packet handling

• Direct logic implementation, or indirect logic 
implementation using CAM, is possible but 
expensive in terms of resources used

• Software decelerator option is to use more 
sophisticated algorithms and data structures 
implemented on a processor, while also minimizing 
logic/processor interface overheads



XilinxJuly 2003, MPSOC2003   33

Lookup results

• In the case study, have 240 ns to perform lookup
• Using a hashing algorithm programmed in C on 

an embedded PowerPC, can perform a lookup 
within 164 ns for 99.5% of cases 

• With more subtle memory management for the 
hash table, and careful implementation, expect 
average lookup in about 30 ns, with less than 
0.0001% chance of not completing within 240 ns
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Example: finite state machines

• Use of software decelerators to implement a 
general class of sequentialized functions that are 
ubiquitous and recognizable in digital designs

• Processor has to determine next state and state 
outputs to meet schedule determined by logic-
based system including the state machine

• As long as overall schedule is met, decelerator 
might support multiple state machines
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Processor implications

• Maximizing clock rates may not be crucial
• Internal brute-force concurrency might also be eliminated, 

giving simpler instruction execution
• Closer integration of i/o channels with internal datapath

can reflect interface-centricity of system
• No need for continuous fetch-execute cycles
• Support for polling instead of interrupt handling
• In short: more like a programmable function unit
• Soft processors offer scope for specialized tailoring 
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Multiple processor implications

• With conventional processor-centric view:
– the multiple centers of control lead towards all the 

complications of parallel supercomputers
– multi-processor programming models needed

• However, with logic-centric view:
– processors do not interfere with each other directly, so 

no extra synchronization or programming issues
– essentially just replicated function units, which is 

already well-understood for programmable logic
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System architecture implications

• Interface-centric view removes processor behavior 
and needs as a main architectural driver

• In particular:
– shared buses are less likely to feature, since serialized 

processor behavior is dominated by potentially highly-
concurrent behavior

– control is decentralized with no inherent hot spots
– programmable logic can be sized, organized and located 

to match best the interfaces, not the processor(s) 
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System design options
• Option 1:  follow conventional hardware design 

process - problem is how to identify good functions 
to be executed by a processor instead of logic

• Option 2:  follow conventional hardware/software 
co-design process - problem is that processors / 
software are given too high status in the system

• Option 3:  devise a revised design process, aimed 
at the unique overall capabilities of new platform 
FPGAs - this is currently an active research area
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Self-reconfiguring platform 
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Source : Brandon Blodget et al, DATE 2003
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Self-reconfiguring integrated 
switch

• 928x928 switch 
• Fully integrated solution  using ICAP 
• One PowerPC dedicated to 

reconfiguration control via ICAP
• >155Mbps/channel
• 144Gbps througput
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Potential  Applications
• Ethernet configuration
• Relocate, swap, cut and paste hardware modules
• “Intelligent” relocatable modules
• Memory mapped access to reconfigurable elements
• Testing (design, built in self test, etc)
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FSL & Bus: Complementary

• FSL provides:
– Unidirectional point to point 

communication
– Unshared non-arbitrated 

communication mechanism
– Best for pipelining / data plane 

processing
• Bus provides:

– Shared resource usage
• Memory
• Slow peripherals

– Addressed-mapped devices

• Use of both/either provides:
– Support for any imaginable data 

flow requirements
– Match interconnect architecture 

to data flow requirements of 
user program

– Supports any arbitrary 
connection topology

• Star topology
• Pipelined unidirectional flow 

network
• Bi-directional flow 
• Ring topology etc.



XilinxJuly 2003, MPSOC2003   46

ProWare Use Case:

Single Processor

• Use software functions from ProWare Library
• Profile/simulate to find hot spots in code

 #include “xilprowarelib.h” // ProWare Library           
 extern int input[64];
 extern void process_2dct(int *);
 int output[64], temp[64];
 int main () {
 int temp1[64], temp2[64];
 idct1d(input, temp1); // from xilprowarelib.h
 matrix_transpose(temp1, temp2); // from xilprowarelib.h
 idct1d(temp2, output); // from xiltags.h
 process_2dct(output); // user’s function
 }
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ProWare Use Case:

Co-Design Only

• Calls to idct1d and matrix_transpose become calls to driver code that 
writes parameters to HW and reads results from HW

• Tags are macros: compile with no side effects on any ANSI C compiler

 #include “xilprowarelib.h” // ProWare Library header file
 // Defines idct1d to be a PE and define port widths
 XIL_PE idct1d(XIL_INPUT in[64], XIL_OUTPUT out[64]);
 // Define matrix_transpose to be a PE and port widths
 XIL_PE matrix_transpose (XIL_INPUT[64], 
XIL_OUTPUT[64]);
 extern int input[64];
 extern void process_2dct(int *);
 int output[64], temp[64];
 int main () {
 int temp1[64], temp2[64];
 idct1d(input, temp1); // from xilprowarelib.h
 matrix_transpose(temp1, temp2); // from xilprowarelib.h
 idct1d(temp2, output); // from xilprowarelib.h
 process_2dct(output); // user’s function
 }
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ProWare Use Case:

Change Connectivity

• Calls to idct1d and matrix_transpose become calls to driver code that 
writes parameters to HW and reads results from HW

• Tags are macros: compile with no side effects on any ANSI C compiler
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#include “xilprowarelib.h” // ProWare Library header file
// Defines idct1d to be a PEand defines the port widths
XIL_PE idct1d (XIL_INPUT in[64], XIL_OUTPUT out[64]);
// Define matrix_transpose to be a PE and define port widths
XIL_PE matrix_transpose (XIL_INPUT in[64], XIL_OUTPUT out[64]);
// Defines idct1d inst0 to be a HWPE with its ports mapped to fsl0 
// of type FSL for  the inputs and fsl1 of type FSL for the outputs
XIL_PEINST(idct1d, inst0, XIL_HWPE, XIL_PORTMAP( 
XIL_FSLIN(fsl0), XIL_FSLOUT(fsl1)))
// Defines matrix_transpose inst0 to be a HWPE with its ports 
// mapped to fsl2 of type FSL for the inputs and fsl3 of type FSL for 
// the outputs
XIL_PEINST(matrix_transpose, inst0, XIL_HWPE, 
XIL_PORTMAP(XIL_FSLIN(fsl2), XIL_FSLOUT(fsl3)))
extern int input[64];
extern void process_2dct(int *);
int output[64], temp[64];
int main () {
int temp1[64], temp2[64];
idct1d(input, temp1); // from xilprowarelib.h
matrix_transpose(temp1, temp2); // from xilprowarelib.h
idct1d(temp2, output); // from xilprowarelib.h
process_2dct(output); // user’s function
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ProWare Use Case:

Co-Design + Multiprocessing

Write data to FSL0

Driver call

Driver calls  
Do nothing

User code

Main automatically 
generated.  Read 
input from FSL 2, 
and call 
process_2dct

 void idct1d_inst0(int *in, int *out) {
 int i;
 for (i = 0; i < 64; i++) {
 XilWriteFsl(in[i]);  
 }}
 int main () {
 int temp1[64], temp2[64];
 idct1d_inst0( input, temp1); 
 matrix_transpose(temp1, temp2); 
 idct1d_inst1( temp2, output); 
 process_2dct(output); 
 }

 void process_2dct(int *in) {
 :
 }
 int main () {
 int in[64],  i;
 while (1) {
 for (i = 0; i < 64; i++) {
 XilReadFsl(in[i]);
 }
 process_2dct(in); 
 }
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Platform FPGAs circa 2005

50 Million System Gates
1.6 Billion Transistors on 1 Chip!!
Hard & Soft IP Blocks
1GHz Embedded Processor
Mixed Signal IP
40Gbps I/O Capability

50 Million System Gates50 Million System Gates
1.6 Billion Transistors on 1 Chip!!1.6 Billion Transistors on 1 Chip!!
Hard & Soft IP BlocksHard & Soft IP Blocks
1GHz Embedded Processor1GHz Embedded Processor
Mixed Signal IPMixed Signal IP
40Gbps I/O Capability40Gbps I/O Capability
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Conclusions

• FPGA is a  programmable system platform
• Focus on overall system cost reduction 
• New use models for HW and SW : the Interface Centric 

model 
• Software deceleration versus Hardware acceleration
• Runtime reconfigurable architecture through Internal 

Configuration Access Port (ICAP)
• Challenge is Design Environment


