Abstract RTOS Modelling for Multi-

Processor SoC using SystemC

Prof. Jan Madsen

Informatics and Mathematical Modelling
Technical University of Denmark
Richard Petersens Plads, Building 321

DK2800 Lyngby, Denmark
jan@imm.dtu.dk

=
—
—

i

Funded by SoC-Mobinet (IST 2000-30094)

= Motivation

~

g B8

DT
s
=

Principles of mapping

Partitioning/clustering

All i Break processesAo
ocation increase parallglism

Mapping
Scheduling
Communication

deadline
a
b

MPSoC 2003

Motivation

DT
=
=

Uni-processor ...

DT
=
=

- Uni-processor ...

Framework to experiment with
different RTOS strategies

Focus on analysis of timing
and resource sharing

Abstract software model, i.e.
no behavior/functionality

Easy to create tasks and
implement RTOS models

Based on SystemC

MPSoC 2003

-2 System model

DT
s
=

-2 System model

rtos

DT
s
=

-2 System model

rtos

DT
s
=

-2 System model

task
= Task messages:

/
= ready
/ = finished
= RTOS commands:
= run

= preenmept
= Resune

V—

links —_
\ scheduler

MPSoC 2003

= System model - SystemC

pa = new
task("task_a", 1,50, 3, 12, 0, ready);
regi st er Task(pa) ;

pb = new
task("task_b", 2, 40, 2, 10, O, r eady) ;

regi st er Task(pb);

pc = new
v ¥ ¥ L 4 task("task_c", 3, 30,1, 10,0, ready);
regi sterTas c);

offset
WCET

identifier

period

v

priority

DT

e
MPSoC 2003 11 D G

P

MPSoC 2003

Aim: Adding tasks without
having to create seperate
communication links

Uses the SystemC master-
slave library

If two tasks send a message
at the same time — they are
executed in sequence, but Ir
undefined order

Global "clock” is used to
keep track of time

DT

R
12 s

P

= Task model

A

A 4 | >

|
— >
T M~ ~ |

o, Iy Sq €, d, T,

r, = time at which task becomes released (or active)
s, = time at which task starts its execution

e, = worst case execution time (WCET)

d, = deadline, task should complete before this!

T, = period, minimum time between task releases
0, = offset (or phase) for first released DT

D=
MPSoC 2003 13 :":

= Task model

MPSoC 2003 14

= Task model - SystemC

SC_MODULE(per Task) {

Sc_out mast er <nessage_t ype> ;
sc_i nsl ave<nessage_type> :
sc_in_clk cl ock;

sc_event -

voi d next _state();
voi d update_state();

SC _HAS PROCESS(per Task) ;

per Task(sc_nodul e_nane nane_, int id_, ...)
sc_nodul e(name_),id(id_), ...)

{
SC METHOD(next state);

sensitive << newSt at eEvent ;

SC METHOD(updat e_st ate);
sensitive << cl ock;

}

private:
t state , ;

MPSoC 2003

15

-+ Scheduling model

= Aim: Simple way to describe
the scheduling algorithm

= Scheduler should only
handle one message at a

NN
000 -
-

= Rate-monotonic scheduling
= preemptive
= WCET

= d=T

m = Fixed priority
T

MPSoC 2003

- Scheduling model - SystemC

Rate monotonic scheduling

voi d RM schedul er::doSchedul e() { t | - message received

_t| = in_nessage; .
it (81 eomr=reat) | from from task |

. push(ti);
e t j : message from task j
= 0 tonl): with highest priority from
if (tj.id!=0 -
it (ik.id !=)o§ { ready list

i f k < tj

SR =t k: message of the

tk =tj; .
out _command = *(runTask(&j, &Q); Currently runn|ng taSk

} else {

}

} else {

tk = tj;

out _command = *(runTask(&j, &Q);
}

} else {

}

MPSoC 2003

= An example

T, e priority
(1] 50 12 3
(2] 40 10 2
(3] 30 10 1

MPSoC 2003

= An example

MPSoC 2003

Extending the task model

= Varying execution times [€,,:€may]

MPSoC 2003

Extending the task model

= Varying execution times [€,,:€may]
= Context switching
= Data dependencies

MPSoC 2003

-+ Data dependencies

synchronizer

T
|

MPSoC 2003

= Resource sharing

MPSoC 2003

Multi-processors

MPSoC 2003

Multi-processors

MPSoC 2003

()
—
O
7))
/)
@
O
O
—
o
m
=
=

7
S
O
"
%
@
O
O
S
o
m
=
—

o-0| 0| 6 |2+
o 4 |6 |3

MPSoC 2003

= Dynamic scheduling

MPSoC 2003

' Changing synchronization protocol

MPSoC 2003

-# Multi-processing anomalies

= Assume a set of tasks optimally scheduled on a
multiprocessor system with:
= fixed number of processors
= fixed execution times (e)
= precedence constraints

= Then
= changing the priority list
= jncreasing the number of processor
= reducing execution times
= weakening the precedence constraints

= May increase the scheduling length! DT

MPSoC 2003

- Example of anomalies

Task 2 and 4 are sharing
a resource, i.e. mutually
exclusion

Reduce e, of task 1

MPSoC 2003

- Consequences of anomalies

= Tasks may complete before their WCETs

= So most on-line scheduling algorithms are
subject to experience anomalies

= Simple but inefficient solution:
= Have tasks completing early idle

MPSoC 2003

Network-on-Chip extension

MPSoC 2003

Network-on-Chip model

MPSoC 2003

= Design space exploration

Timing Aware B L ;I - KN

. ENIEN
QoS Aware L1 iy nll.,xl - Il Kl

Any traffic from a b

;
I 1
has higher priority ~ ** % "5“ | L2 . - N IIIEN
| i

2 I

=3
[=
(/]
[|

Allocation Aware I
Swap taskon PEs 2| [« =
t0: 2,3 14,51 -

] |
T r
—
] |
N
[L
H
o
|
H

o | M bus| [y = |

MPSoC 2003

= Simple SystemC based framework to study the
dynamic behavior of a task set running under the
supervision of an abstract RTOS

= Synchronizer to handle data dependencies
= Extension to multi-processor/RTOS systems
= Network-on-Chip extension (new)

= Not covered,
= Allocator to handle resource sharing
= Power estimation/profile
= Multi-processing anomalies (in your slides)

MPSoC 2003

= References

= Scheduling in Real-Time Systems
F. Cottet, J. Delacriox, C. Kaiser, Z. Mammeri
John Wiley & Sons, 2002

= Real-Time Systems

J.W.S. Liu
Printice Hall, 2000

= Real-Time Systems and Programming Languages

A. Burns, A. Wellings
Addison-Wesley, 2001 (third edition)

= System Design with SystemC
T. Grotker, S. Liao, G. Martin, S. Swan
Kluwer, 2002

MPSoC 2003

