Abstract RTOS Modelling for Multi-Processor SoC using SystemC

Prof. Jan Madsen

Informatics and Mathematical Modelling
Technical University of Denmark
Richard Petersens Plads, Building 321
DK2800 Lyngby, Denmark
jan@imm.dtu.dk

Motivation

٠,

Principles of mapping

Partitioning/clustering

Allocation

Mapping

Scheduling

Communication

Motivation

Uni-processor ...

Uni-processor ...

Framework to experiment with different RTOS strategies

Focus on analysis of timing and resource sharing

Abstract software model, i.e. no behavior/functionality

Easy to create tasks and implement RTOS models

Based on **SystemC**

rtos

System model

וע

System model - SystemC

Link model

- Aim: Adding tasks without having to create seperate communication links
- Uses the SystemC masterslave library
- If two tasks send a message at the same time – they are executed in sequence, but in undefined order
- Global "clock" is used to keep track of time

וע

Task model

r₁ = time at which task becomes *released* (or active)

s₁ = time at which task *starts* its execution

e₁ = worst case **execution** time (WCET)

d₁ = **deadline**, task should complete before this!

 $T_1 = period$, minimum time between task releases

 $o_1 = offset (or phase)$ for first released

=

Task model

Task model - SystemC

```
SC MODULE(perTask){
   sc outmaster<message type>
                                out message;
   sc inslave<message type>
   sc in clk
                                clock;
   sc event
                                newStateEvent;
   void next state();
   void update state();
   SC HAS PROCESS(perTask);
   perTask(sc module name name , int id , ...)
          : sc module(name_),id(id_), ...)
       SC METHOD(next_state);
       sensitive << newStateEvent;</pre>
       SC METHOD(update state);
       sensitive << clock;
   private:
       t state state, new state;
```


Scheduling model

 Aim: Simple way to describe the scheduling algorithm

Scheduler should only handle one message at a time

Rate-monotonic scheduling

- preemptive
- WCET
- **T**=b
- Fixed priority

Scheduling model - SystemC

Rate monotonic scheduling

```
void RM scheduler::doSchedule() {
  ti = in message;
  if (ti.comm==ready) {
    Q.push(ti);
  } else {
    tk.id = 0;
     = Q.top();
  if (tj.id != 0) {
    if (tk.id != 0) {
      if (tk < tj) {
        out command = *(preemptTask(&tk, &Q));
        tk = ti;
        out command = *(runTask(&tj, &O));
        else {
    } else {
      tk = tj;
      out command = *(runTask(&tj, &Q));
    else {
```

- ti: message received from from task i
- tj: message from task j with highest priority from ready list
- tk: message of the currently running task

An example

An example

=

Extending the task model

Varying execution times [e_{min}:e_{max}]

Extending the task model

- Varying execution times [e_{min}:e_{max}]
- Context switching
- Data dependencies

Data dependencies

Resource sharing

24

Example

	o _i	T _i	e _i
1	0	4	2
2+3	0	6	2+2
4	4	6	3

Dynamic scheduling

٠,

Changing synchronization protocol

=

Multi-processing anomalies

- Assume a set of tasks optimally scheduled on a multiprocessor system with:
 - fixed number of processors
 - fixed execution times (e_i)
 - precedence constraints
- Then
 - changing the priority list
 - increasing the number of processor
 - reducing execution times
 - weakening the precedence constraints
- May increase the scheduling length!

•>

Example of anomalies

Task 2 and 4 are sharing a resource, i.e. mutually exclusion

Reduce e₁ of task 1

Consequences of anomalies

- Tasks may complete before their WCETs
- So most on-line scheduling algorithms are subject to experience anomalies
- Simple but inefficient solution:
 - Have tasks completing early idle

Network-on-Chip extension

Network-on-Chip model

Design space exploration

QoS Aware
Any traffic from a
has higher priority

Allocation Aware Swap task on PEs to: 2,3 | 4,5 | 1

Summary

- Simple SystemC based framework to study the dynamic behavior of a task set running under the supervision of an abstract RTOS
- Synchronizer to handle data dependencies
- Extension to multi-processor/RTOS systems
- Network-on-Chip extension (new)
- Not covered,
 - Allocator to handle resource sharing
 - Power estimation/profile
 - Multi-processing anomalies (in your slides)

וע

References

- Scheduling in Real-Time Systems
 - F. Cottet, J. Delacriox, C. Kaiser, Z. Mammeri John Wiley & Sons, 2002
- Real-Time Systems
 - J. W. S. Liu Printice Hall, 2000
- Real-Time Systems and Programming Languages
 - A. Burns, A. Wellings Addison-Wesley, 2001 (third edition)
- System Design with SystemC
 - T. Grotker, S. Liao, G. Martin, S. Swan Kluwer, 2002

