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Outline

Problem and methodology.
Ozer, Lv, Wolf: smart camera system.
Fritts, Wolf: Programmable VSPs.
Ozer, Lv, Wolf: Optimizing the smart 
camera software.
Wolf, Lv, Ozer: Architectures for smart 
cameras.



What is video processing?

Initial steps operate on pixels, are 
dominated by data.
Later steps operate on other types of 
data:

Smaller data volumes.
Wider variety of data types.
More variation in control flow, run time.



Multimedia requirements

Complex algorithms:
multiple phases;
data and control.

Today’s applications: compression.
Tomorrow’s applications: analysis.



The multimedia processing 
funnel
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Design methodology

Successive refinement:
Matlab algorithms.
C on uniprocessor.
Custom heterogeneous multiprocessor.

At each stage:
Measure performance.
Optimize where possible.
Identify optimizations at the next level of abstraction.



Smart cameras for smart 
rooms

Coordinated cameras track subject:



Questions

Measurement:
What do we measure?
On what 
implementation do we 
measure it?
How accurate do our 
measurements have to 
be?

Architecture:
What uniprocessor 
architecture is best?
Do we need a 
multiprocessor?
How do we balance 
programmability with 
other goals?



Ozer et al: human activity 
recognition algorithm
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Real-time analysis
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Tuning the smart camera 
software

Initial C/Trimedia was direct translation 
from Matlab.
Goals:

Increase frame rate.
Reduce latency.
Identify bottlenecks for next-generation 
architecture.



Real-time vs. just fast

Real-time computing adheres to 
constraints:

Must perform at a given rate.
To satisfy the rate, must minimize variations 
in processing time.



Stage times before 
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Smart camera CPU times
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Smart camera CPU times, 
cont’d.
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Normalized standard 
deviation of stage times
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Optimizations

Change the algorithm.
Change the program structure.
Change the instructions.



Algorithmic changes

Superellipses were expensive to fit and 
overkill.

Replaced with ellipse fitting.

Improved adjacency algorithm.



Region finding

Operates on 3 x 3 window.
Roughly linear in frame size.
Sequential algorithm---window moves one 
pixel per step.



Program changes

Contour fitting is very control intensive:
Compares local configurations of bits.

Transformed into data-parallel operations 
for VLIW: 0
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Instruction changes

Trimedia provides library of intrinsic 
functions that map onto Trimedia 
instruction sequences.
Goal: eliminate branches.

Special instructions.
Loop unrolling.



Before and after stage 
times

0

10

20

30

40

50

60

Pr
oc

es
si

ng
 T

im
e(

m
s)

Region Contour SuperFit Match Total

Original Optimized



Results

Before: 5 frames/sec.
After: 31 frames/sec w/o HMM, 25 
frames/sec with HMM.
Latency approx. 100 ms.
Smaller variation in frame processing 
time.



Architectural experiments

Fritts/Wolf:
characterize applications;
compare architectural styles (VLIW, 
superscalar);
evaluate architectural parameters (clock rate, 
pipelining, etc.).



VLIW processor model
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Workload characteristics 
experiments

Goal: compare media workload 
characteristics to general-purpose load.
Used MediaBench benchmarks.
Compiled on Impact compiler, measured 
with with Impact simulator.



Basic characteristics

Comparison of operation frequencies with SPEC
(ALU, mem, branch, shift, FP, mult) => (4, 2, 
1, 1, 1, 1)
Lower frequency of memory and floating-point 
operations
More arithmetic operations
Larger variation in memory usage 

Basic block statistics
Average of 5.5 operations per basic block
Need global scheduling techniques to extract 
ILP



Basic characteristics, 
cont’d

Static branch prediction
Average of 89.5% static branch prediction on 
training input
Average of 85.9% static branch prediction on 
evaluation input

Data types and sizes
Nearly 70% of all instructions require only 8 
or 16 bit data types



Multimedia looping 
characteristics

Highly loop centric
95% of CPU time in two innermost loop levels
Significant processing regularity
About 10 iterations per loop on average

Complex loop control
= average # of instructions executed per loop 
invocation/total # of loop instructions
Average path ratio of 78%--high complexity



Average iterations per loop
and path ratio
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Instruction level 
parallelism

Instruction level parallelism
base model: single issue using classical 
optimizations only
parallel model: 8-issue

Explores only parallel scheduling 
performance

assumes an ideal processor model
no performance penalties from branches, cache 
misses, etc.



ILP results
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Multiprocessor 
architectures for video

Interested in high-speed video 
processing.

150 frames/sec.

Want reasonably low-power operation for 
pervasive applications.



High-speed smart cameras

High frame rates provide better motion 
capture.
Frame rate of 150 frames/sec is 
considered desirable.
Stanford CMOS camera can digitize at 
10,000 frames/sec.



Why heterogeneous 
architectures make sense
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Algorithm flow
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Average processing time 
by stage
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Average IPC by stage
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Tiehan’s VLIW 
implementation

Unroll loop to perform multiple 
comparisons in parallel.
Pack results into bit vector to address 
results table.
Register file, cache provide for reuse of 
pixel values.



Contour crawler machine

Hardware implementation of VLIW code:

memory

Q

Q

Q

FSM



Crawler and memory

Crawler performance depends on memory 
system.
Access patterns vary in 2 dimensions:

1 2 3
X 4

567
8



Memory system design

Want to minimize number of partitions to 
reduce row/column overhead.
Only memory organization that allows for 
all parallel accesses is one-word partition.
Assume we fetch one row or column at a 
time---3 fetches/cycle.



Single contour crawler

Assuming row/column access pattern, 
crawler is faster than VLIW by a relatively 
small constant.



Multiple crawlers

Assuming we can patch together contours, we 
can start multiple crawlers.

Multiple crawler performance is limited by 
memory.

Multiple crawlers’ memory accesses can conflict.



Full-frame SIMD

Can build a large SIMD array with one 
processor per pixel.
Area*delay:

Speed is roughly constant.
PE is probably about the same size as the 
crawler.
Not clear it is worth the silicon.



Heterogeneous system

Region:
Stream processor with current algorithm.
Stream processor + RISC for others.

Contour:
Crawler.

Ellipse:
Superscalar/RISC.

Graph:
RISC.



Stage pipelining

Stages are fairly well balanced (region/contour, 
superfit/match):
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Heterogeneous vs. VLIW

VLIW:
Off-the-shelf IP.
Easy to program.
10 mm2 in 0.13 micron.

Heterogeneous:
Requires more design of blocks, memory.
Pipelineable for 2.3X speed-up.



Heterogeneous 
multiprocessor size

stage PE
area 
(mm^2)

background
MIPS32 
4Km 0.9

contour custom 0.001

ellipse, graph MIPS64 5Kf 5

total frame processor 5.901

classification MIPS64 5Kf 5

number of frame processors 3

grand total 22.703



Summary

Multimedia applications are already more 
complex and will become more so:

multiple algorithms;
complex control and data.

Instruction-level parallelism helps, but 
isn’t everything.


