Reconfigurable EPGA's Bridging Worlds

Dr. Yankin Tanurhan

Sr. Dir. Applications & IP Solutions Group

Overview

- What's happening in the world of System on Chip (SoC) ?
- SoC Industry problems
- Compelling reasons for EPGA's
- Challenges in EPGA's
- Applications
- Conclusions and Summary

Why is FPGA Winning?

Product life cycles shortening

- FPGA reduces development cycle
- FPGA reduces development cost

Popularity of reconfigurable systems

- FPGA allows field upgrade
- **Increasing FPGA densities**

Lessening process disadvantage

• FPGA is a technology driver for independent foundries

What's Happening in SOC ?

- All logic suppliers (ASIC/ASSP/PLD) are tending toward SOC devices that are specialized for a few applications and targeted toward a small group of customers
- The rich get richer => market share is being concentrated
 - Leverage customer relationships to gain system expertise
 - Large investment needed in IP in order to meet SOC specifications
 - Market share brings economy of scale in unit price
 - Time to market is shrinking
 - Revenue and profit impact from delayed entry is immense
 - Communications and consumer lead the charge to 6 month product life
- Development costs are exploding
 - Mask sets cost
 - Complexity of design
- Specialization and partnership rule the day
 - Design services, IP, Software, Tools, Foundries, Packaging, Test

System on Chip - The Most Significant Trend in the Industry

Source: Dataquest

MPSOC 2003

When Will SOC Impact FPGA?

- SOC has already taken significant share from every type of IP that can be manufactured on a standard CMOS process
- Modular processes will enable embedded DRAM and Flash markets

MPSOC 2003

SoC Industry Problems

- Silicon re-spins becoming increasingly expensive
 - Both in development time and cost -- 2 re-spins is the standard
- For OEMs, system complexity is staggering
 - High risk of design errors, product delays, added costs
- Internal and external pressures to cut time to market
 - Every week of delay is 1% of market share lost
- Need to enable the next-level of platform-based design
 - 6-12 months product lifecycles require design reuse
- Industry standards and product features are continually emerging and changing
 - All first MPEG4 chips were non-compliant. What will happen with RapidIO, Fiberchannel, Bluetooth, etc.?
- Need to add design flexibility and reconfigurability to SoCs
 - Field updates will be part of the game plan
- Ongoing push to integrate functionality and scale down size

Compelling Reasons to Embed FPGAs

- Save SoC development cost and time via flexibility
 - EPGA cores allow debugging anywhere in the design cycle
 - Reduce risk of additional NRE and mask set costs
- Avoid expensive re-spins
 - Mask set costs are headed toward multi-million \$\$\$ each
- Enable next-level of platform-based design
 - Rapid Prototyping and Productization
 - ASIC designs can start before the application is stable
 - Time-to-market and cost advantages gained as each application or board is re-targeted
- Keep up with evolving standards and changing features
 - Extend the life of ASICs/ASSPs with field reconfigurability

Challenges of Embedding FPGA

- High barriers to entry for FPGA architecture development
- Support of the existing SOC design methodology
 - Modeling/Verification at many levels of abstraction
 - Support for SOC tools: static timing analysis, formal checking, power analysis
 - Merged test methodology
- **FPGA** Core related challenges
 - Software that can cascade FPGA blocks on the fly
 - Pin fixing required
 - Access to the core for programming and test
 - Interface between the FPGA and the rest of the SOC
 - Debug with limited core access
- Process compatibility / porting

ASIC Designer Expectations

Board-Level Expectations

- Single-chip solution
- Live-at-power-up
- Non-volatile
- Well-behaved power-up profile
- Firm Error immune
- Some level of design security
- Design-Flow Expectations
 - Deterministic design flow
 - Incremental capability
 - Heavy simulation based
 - Min-Max timing analysis

How Serious are Soft Errors?

- New processes increase the risk of soft errors
 - Greater percentages of neutrons can generate charged particles with sufficient energy to cause soft errors
- When SRAM cells are used to configure an FPGA, configuration soft errors can potentially cause serious system impact

Source: iRoC Technologies / Semico Research Corporation

- At a minimum, the configuration data must be reloaded to recover
 - Can take many clock cycles before configuration loss is discovered
- In many cases, the device must be power-cycled to clear the error
 - May involve a complete system reset
- High current due to contentions in a mis-configured device may damage device or board
 - Simultaneously-enabled tie-offs to power and ground, for example
- Mitigation methods rely on redundancy with monitor circuits
 - Increased board space, BOM cost, power consumption, system complexity, design time,

MPSOC 2003

EPGA Application Opportunities

- ASIC and ASSP suppliers see the advantage of reconfigurable SoCs
 - Anywhere a superset of functionality can offer bigger market penetration
 - Networking example: combining an SDH/Sonet interface with a Gigabit Ethernet port
 - Anywhere small changes trigger the design of new versions and variants
 - Such as copiers, LCD controllers, automotive electronics
 - Anywhere the reach of MCUs and DSPs can be broadened by designing one device to fit many interfaces
 - Interface example: USB, PCI, CAN, I2C, PWM, Ethernet, etc.
 - As main drivers in networking and communications

Increasing Bandwidth at All Levels of the Network

MPSOC 2003

Exploding Number of Communications Interface Standards

• Designers need devices to BRIDGE these interfaces so that they can make their standard parts communicate with each other

MPSOC 2003

MPSOC 2003

What does EPGA Reconfigurability Enable

Increased ASPs, Increased Profit Margins & Cost Reduction with Reconfigurability

Time-to-Market & Re-spin Avoidance Advantages with Reconfigurability

Extended Product Life, Differentiation & Reach with Reconfigurability

MPSOC 2003

How EPGA based Bridges Solve Interoperability Problems

Bridges include a combination of . . .

- Dedicated high-speed I/O circuits
 - Banks of 3.1875 Gbps CML Transceivers
 - Banks of 1.0+ Gb/s LVDS Transceivers
- Embedded interface protocol controllers
 - For example XAUI, SPI-4.2, Fibre Channel, 3GIO, RapidIO, HyperTransport . . .
 - Implemented in ASIC technology
 - High density = lower cost
 - Fixed timing = easier verification and faster timing closure
 - Standard cell = lower power
- High-speed, high-utilization user programmable logic
- Three elements united in a single device
 - Includes seamlessly integrated I/O circuits and protocol controllers

Designers Need to Meet the Demands for Higher Bandwidth

- Profusion of New High-Performance Interface Standards
 - Source-synchronous switched-packet interfaces
 - ◆ SPI-4.2 up to 12.8Gb/sec
 - CSIX up to 32Gb/sec
 - HyperTransport up to 3.2GB/sec
 - RapidIO parallel up to 4GB/sec
 - Serial switched-packet interfaces
 - XAUI 10Gb/sec
 - RapidIO serial up to 10Gb/sec
 - ♦ 3GIO 2.5Gb/sec and higher
 - High-speed serial system-level interfaces
 - IEEE 1394 / iLink / Firewire 400Mb/sec
 - USB 2.0 480Mb/sec
 - InfiniBand 2.5Gb/sec and higher
- Vendors of Standard parts are not all choosing the same interface!

Embedded FPGA Content for a NetWorking BridgeFPGA™

- Rapid productization through exchangeable IP blocks
 - SPI-4.2
 - 10GE MAC
 - 3GIO
 - HyperTransport
 - RapidlO
 - CSIX
 - Infiniband
 - PCI-X

Key Factors for Success

A credible FPGA playesr emerges with an EPGA IP core

- More than 7-10,000 ASIC gates/mm2 in .13 Family
- Up to 400MHz clock speed with a sweet spot between 75-150MHz
- Competitive FPGA power consumption / die area
- Fully integrated with state-of-the-art SoC design methodology
- Commitment to IP core architectural features
- Complete and unlimited reprogrammability
- Broad availibility

Key Take Aways

- Frontal attack in the traditional market sector is not always a good path to success
- Disruptive technologies can open new growth potentials and rapid prototyping eases that path
- EPGAs help to reduce design risk and shorten design response
 - EPGAs can act as a shield and sword
 - Protects users against the effects of evolving standards
 - Protects users from the effects of market shifts
 - Protects ASIC/ASSP suppliers from FPGA platform competitors
 - Helps rapid productization

Enabling ASIC and ASSP suppliers to get to market faster and stay there longer