
Energy-Aware QoS Management

Faculty: Kang G. Shin
Grad students:

Padmanabhan Pillai
Hai Huang

Real-Time Computing Laboratory
EECS Department
The University of Michigan

Outline

l Real-time energy goals
l Energy-efficient services
l Real-time dynamic voltage scaling
l Memory power reduction
l Energy-aware Quality of Service (EQoS)

Motivation
l Increasing number of

q handheld, mobile computation and communication devices
q smart sensors, actuators and ammunitions

l Increasingly complex software and faster hardware,
consuming more energy

l Rapid increases in HW complexity, speed, and power
consumption, but battery technology is not keeping up

l Need to conserve energy, improve computational
efficiency through the OS on power-constrained systems

Real-Time & Energy Goals

l Many power-constrained embedded or mobile
systems have real-time tasks
q Time/mission-critical computations, typically periodic
q Need to provide guarantees for meeting deadlines

l Available stored energy fundamentally limits the
system•s ability

l Need to allocate energy resource to most critical
or desirable computations, while meeting timing
constraints

Real-Time App Characteristics

l Typically, composed of well-defined task set
l Canonical model of a real-time task, Ti:

q Is periodic, with period ti
q Has worst-case execution time, Ci

q Has relative deadline, di typically equal to ti
l Periodic model can accommodate aperiodic and

sporadic tasks
l Schedulability of RT systems is well-studied.

Energy-Efficient RTOS:
Accomplishments

l Reduce overhead in system services (SOSP•99)
=> lower computational overhead
=> lower CPU power consumption !!!
q Optimized IPC for periodic RT tasks
q Combined Static Dynamic (CSD) scheduling
q Protocol stack layer-bypassing
q Eliminate naming services

l Exploit HW mechanisms, e.g., voltage scaling of
CPU (SOSP•01), power management of memory
subsystem (USENIX•03)

RT-DVS

l Goal: reduce per-cycle CPU energy costs
l Reducing frequency permits lower voltage
l Lower voltage (V) on CPU to obtain V2 savings

per cycle
l Frequency change affects execution time,

altering RT schedulability
l We have already developed energy-conserving

algorithms for DVS that preserve RT guarantees
(SOSP•01)

Memory Power Management

l Goal: reduce power dissipation for memory access
l Main memory consists of multiple devices, each

with independently-controlled power states
l Switch devices not needed for current task to low-

power states
l Modify page allocation to reduce the number of

devices in use by each task
l 59-94% memory power reduction with RDRAM

(USENIX•03)

Need for Adaptation

l Many existing techniques to reduce energy
consumption

l No general guidelines on how to make best use
of limited energy

l Want to provide more energy & runtime to more
critical or beneficial tasks

l Need to adapt workload to maximize system
gains or utility of computation

Example

l A remote surveillance device transmits
compressed video and audio

l Solar-powered, but must run overnight
l 3 real-time tasks:

q Radio transmitter (critical): constant bit rate
q Video codec (degradable):

high quality (30 fps, 640x480) MPEG4,
low quality (10 fps, 160x120) MPEG1

q Audio codec (noncritical): mp3, either on or off

Example, cont•d

l Adapt task set based on power consumption of
tasks, available energy, hours until daylight, and
relative value of the tasks, e.g.,
q During daytime or high battery levels:

radio, video at high quality, audio on
q Low battery at night: radio, video low quality, audio on
q Energy is critically low: radio, video low quality, audio off

l Dynamic adaptation needed in general, as battery
levels and time until daylight are variable

EQoS

l Need to maximize benefits gained from energy
spent, but HOW?
=> Energy-aware Quality of Service (EQoS):

q Vary per-task QoS, which directly affects task energy
consumption

q Select a set of task QoS levels to maximize total
utility of system over given runtime

q Cast selection into tractable, maximization problem
=> MCKP

EQoS Design

l EQoS design goals:
q Leverage sprint-and-halt

and DVS techniques
q Meet system runtime goals
q Maximize benefits of task

execution

l Need methods of changing
QoS for RT tasks, and specifying
benefits and energy requirements

RT QoS Adaptation

l How does one change QoS for RT tasks?
l Adapt techniques from RT & fault-tolerance:

q Period extension
q Imprecise computation
q Apply different algorithms or CODECs
q Omission

l Degraded service execution requires less energy
l For EQoS, need to specify set of QoS levels and

required energy for each task

Utility

l Abstract notion of value from executing tasks
l Need to specify utility for each degraded service

level of each task, e.g.,
q Increasing Rewards for Increasing Service (IRIS)
q Performance Index (PI) for control applications
q Perceived-quality metrics for multimedia

l Actual specification flexible to types of
applications and systems designed

EQoS Problem

l Given:
q tasks with QoS levels defined, with energy required and utility

gained for each level
q remaining system energy
q desired runtime, or known time until recharge

l Select a QoS level for each task, so as to:
q achieve desired runtime
q maximize total utility

l This can be formulated as a MCKP
q Each task as a category and its set of QoS levels as items in the

category
q Knapsack size = power budget
q Item values and weights = utility rates and power consumption

MCKP vs. EQoS Problem

Value
Weight

Value
Weight

Value
Weight

Weight Limit

Item 1

Item 2

Item n

...

Knapsack ProblemMC
...

...

...

Value
Weight

Value
Weight

Value
Weight

Category

Category

Category

Energy Energy

Energy Energy

Energy
Energy

Energy

Runtime Constraint

Task

Task

Task

EQoS

Optimal Algorithms

l NP-hard: all KP can be expressed as MCKP
l Exponential Search - O(mn)
l Branch-and-Bound (BB)

q Need fast bound computation
q Can use LMCKP as upper bound
q May still require exponential time

...

LMCKP Details

l Linear relaxation of MCKP - fractional selections
allowed
q Start with minimal QoS levels selected
q Apply €upgrades• sorted by value/energy up to budget
q Fractionally apply next upgrade

l Guaranteed ≥ discrete MCKP optimal solution
l O(nm) time, excluding sorting of upgrades

Optimal Algorithms, cont•d

l Dynamic Programming (DP)
q Pseudo-polynomial time, O(mnk)
q Partial solutions for 1, 2, ‚, n tasks for all

possible power budgets (energy/runtime)

Heuristics

l Linear:
q Use LMCKP solution, as with BB bound
q Drop fractional part

l Greedy:
q Start with same approach as LMCKP
q Continue selecting smaller upgrades

l O(nm) overhead, without accounting for
upgrades sorting

Simulation

l Permits exploring a large multi-dimensional task
set space

l Simulate various hardware configurations, RT
scheduling, DVS mechanisms
q Static RM, Static EDF, ccRM, ccEDF, laEDF

l Generated 1000 random task sets, each with 10
tasks, and each of which has up to 5 QoS levels
q QoS degradation models period extension, imprecise

computation, algorithmic change

l EQoS algorithms w/o DVS achieve desired runtime
l DVS conserves extra energy, throws off estimated

runtime

Simulation Results

0

0.5

1

1.5

2

0.00E+00 2.00E+09 4.00E+09 6.00E+09 8.00E+09

Initial Energy

N
or

m
al

iz
ed

 R
un

tim
e

Greedy Linear Max Min Opt

0

0.2

0.4

0.6

0.8

1

1.2

min linear greedy opti max

No
rm

al
iz

ed
 U

til
ity

Simulation Results - DVS

l DVS increases energy efficiency
l Throws off adaptation -- extends runtime

l 3 volt/freq:
q 5V, 1.0*fmax
q 4V, .75*fmax
q 3V, .35*fmax 0

0.5

1

1.5

2

2.5

3

3.5

0.00E+00 2.00E+09 4.00E+09 6.00E+09 8.00E+09

Initial Energy

N
or

m
al

iz
ed

 R
un

tim
e

Greedy Linear Max Min Opt

l DVS compensation achieves desired runtime
with higher utility

Simulation Results, cont•d

Adaptation w/ DVS Compensation
Utility comparison between DVS
compensation and w/o compensation

0

0.5

1

1.5

2

0.00E+00 2.00E+09 4.00E+09 6.00E+09 8.00E+09

Initial Energy

N
or

m
al

iz
ed

 R
un

tim
e

Greedy Linear Max Min Opt

0

0.5

1

1.5

2

2.5

3

min linear greedy opti max

No
rm

al
iz

ed
 U

til
ity

DVS

DVS-comp

Implementation

l Implemented on Linux 2.2
q Periodic real-time support
q PowerNow! driver
q Real-time scheduler modules
q EQoS adaptation module
q Battery monitoring module

l Currently supports Athlon, Duron, K6-2 processors that
implement AMD•s PowerNow! Technology

Experiments

l Measurements on a Compaq Presario 1200Z
l Implement RT version of Lame MP3 encoder

q use quality parameter to vary QoS
q multiple concurrent instances

l Results follow trend observed in simulations

Conclusions

l RT-DVS provides low-level CPU voltage control
q Maintains timing guarantees for RT tasks
q Significant energy savings, comparable to non-RT DVS

l EQoS provides task/app adaptation in energy-
constrained real-time systems
q Provides guidelines to best utilize available energy

among tasks
q Frames energy adaptation as a tractable problem
q Heuristics work nearly as well as optimal algorithms in

practice

Ongoing and Future Work

l Fine-grained measurement of energy
consumption and its feedback to EQoS manger

l New task model based on energy consumption
l Energy consumption by components other than

CPU, such as memory, flash memories/micro-
disks, communication procotols (IEEE 802.11
and other sensor networking protocols)

l Construction of and experimentation with a
network of iPaqs.

Algorithms -- Summary

l Optimal solutions: dynamic programming (DP),
branch and bound (BB)
q NP-hard
q DP high memory overhead, runtime overhead
q BB exponential upper bound on computation

l Heuristics: LMCKP, Greedy
q Under utilizes power budget
q Very fast computation
q Greedy still close to optimal

