Energy-Aware QoS Management

Faculty: Kang G. Shin

Grad students:
Padmanabhan Pillai
Hail Huang

Real-Time Computing Laboratory
EECS Department
The University of Michigan

Outline

Real-time energy goals

Energy-efficient services

Real-time dynamic voltage scaling
Memory power reduction

Energy-aware Quality of Service (EQ0S)

Motivation

Increasing number of
handheld, mobile computation and communication devices

smart sensors, actuators and ammunitions
Increasingly complex software and faster hardware,
consuming more energy

Rapid increases in HW complexity, speed, and power
consumption, but battery technology is not keeping up

Need to conserve energy, improve computational
efficiency through the OS on power-constrained systems

Real-Time & Energy Goals

Many power-constrained embedded or mobile
systems have real-time tasks
Time/mission-critical computations, typically periodic
Need to provide guarantees for meeting deadlines

Available stored energy fundamentally limits the
systemes ability

Need to allocate energy resource to most critical

or desirable computations, while meeting timing
constraints

Real-Time App Characteristics

Typically, composed of well-defined task set
Canonical model of a real-time task, T::

Is periodic, with period t,

Has worst-case execution time, C,

Has relative deadline, d, typically equal to t

Periodic model can accommodate aperiodic and
sporadic tasks

Schedulability of RT systems is well-studied.

Energy-Efficient RTOS:
Accomplishments

Reduce overhead In system services (SOSP:99)
=> |ower computational overhead

=> |lower CPU power consumption !!
Optimized IPC for periodic RT tasks
Combined Static Dynamic (CSD) scheduling
Protocol stack layer-bypassing
Eliminate naming services

Exploit HW mechanisms, e.g., voltage scaling of

CPU (SOSP:01), power management of memory
subsystem (USENIX:03)

RT-DVS

Goal: reduce per-cycle CPU energy costs
Reducing frequency permits lower voltage

_ower voltage (V) on CPU to obtain V2 savings
ner cycle

—requency change affects execution time,
altering RT schedulability

We have already developed energy-conserving
algorithms for DVS that preserve RT guarantees
(SOSP:01)

Memory Power Management

Goal: reduce power dissipation for memory access

Main memory consists of multiple devices, each
with independently-controlled power states

Switch devices not needed for current task to low-
power states

Modify page allocation to reduce the number of
devices In use by each task

59-94% memory power reduction with RDRAM
(USENIX03)

Need for Adaptation

Many existing techniques to reduce energy
consumption

No general guidelines on how to make best use
of limited energy

Want to provide more energy & runtime to more
critical or beneficial tasks

Need to adapt workload to maximize system
gains or utility of computation

Example

A remote surveillance device transmits
compressed video and audio

Solar-powered, but must run overnight

3 real-time tasks:

Radio transmitter (critical): constant bit rate

Video codec (degradable):
high quality (30 fps, 640x480) MPEG4,
low quality (10 fps, 160x120) MPEG1

Audio codec (noncritical): mp3, either on or off

Example, cont.d

Adapt task set based on power consumption of
tasks, available energy, hours until daylight, and
relative value of the tasks, e.qg.,

During daytime or high battery levels:
radio, video at high quality, audio on

Low battery at night: radio, video low quality, audio on
Energy is critically low: radio, video low quality, audio off

Dynamic adaptation needed in general, as battery
levels and time until daylight are variable

EQO0S

Need to maximize benefits gained from energy
spent, but HOW?

=> Energy-aware Quality of Service (EQO0S):

Vary per-task QoS, which directly affects task energy
consumption

Select a set of task QoS levels to maximize total
utility of system over given runtime

Cast selection into tractable, maximization problem
=> MCKP

EQo0S Design

EQoS design goals:
Leverage sprint-and-halt
and DVS techniques
Meet system runtime goals

Maximize benefits of task
execution

Need methods of changing

Adaptable (Auantified
RT Tasks Utilty/Value

" = | Energy—fidaptaticon

Algorithms

" = | Energy—Consenving

Mechanisms
eg., DV3, hatt

Application
Level

QoS for RT tasks, and specifying
benefits and energy requirements

RT QoS Adaptation

How does one change QoS for RT tasks?

Adapt techniques from RT & fault-tolerance:
Period extension
Imprecise computation
Apply different algorithms or CODECs
Omission

Degraded service execution requires less energy

For EQo0S, need to specify set of QoS levels and
required energy for each task

Utility

Abstract notion of value from executing tasks

Need to specify utility for each degraded service
level of each task, e.g.,
Increasing Rewards for Increasing Service (IRIS)
Performance Index (PI) for control applications
Perceived-quality metrics for multimedia

Actual specification flexible to types of
applications and systems designed

EQo0S Problem

Given:

tasks with QoS levels defined, with energy required and utility
gained for each level

remaining system energy
desired runtime, or known time until recharge

Select a QoS level for each task, so as to:
achieve desired runtime
maximize total utility

This can be formulated as a MCKP

Each task as a category and its set of QoS levels as items in the
category

Knapsack size = power budget
Item values and weights = utility rates and power consumption

MCKP vs. EQ0S Problem
EQoS MCKmapsack Problem

Task

Ca)Qoryl)@l ' T '

Value Value
Energy tht Energy W%t
Task
Ca)Qory |)6.) <:> L <:>

Value Value

_ Energy W)(ht Energyw)(ht /
Task Energy V%ht Limit

Ca)Qory I)(] " [E] o [E:] Runtime Constraint

Value

: Value
Energywxht Energy ht

Optimal Algorithms

NP-hard: all KP can be expressed as MCKP
Exponential Search - O(m") /, \

Branch-and-Bound (BB) o O
Need fast bound computation AN / \
Can use LMCKP as upper bound
May still require exponential time

LMCKP Detalls

Linear relaxation of MCKP - fractional selections
allowed
Start with minimal QoS levels selected
Apply €upgradese sorted by value/energy up to budget
Fractionally apply next upgrade

Guaranteed 3 discrete MCKP optimal solution
O(nm) time, excluding sorting of upgrades

Optimal Algorithms, contsd

Dynamic Programming (DP)
Pseudo-polynomial time, O(mnk)

Partial solutions for 1, 2, ,, n tasks for all
nossible power budgets (energy/runtime)

l
L B | ' v
[N '\ '\
n&\@%@

Heuristics

Linear:
Use LMCKP solution, as with BB bound
Drop fractional part

Greedy:
Start with same approach as LMCKP
Continue selecting smaller upgrades

O(nm) overhead, without accounting for
upgrades sorting

Simulation

Permits exploring a large multi-dimensional task
set space

Simulate various hardware configurations, RT
scheduling, DVS mechanisms
Static RM, Static EDF, ccRM, ccEDF, laEDF

Generated 1000 random task sets, each with 10
tasks, and each of which has up to 5 QoS levels

QoS degradation models period extension, imprecise
computation, algorithmic change

Simulation Results

EQoS algorithms w/o DVS achieve desired runtime

DVS conserves extra energy, throws off estimated
runtime

‘—Q—Greedy —a— Linear —a— Max —<— Min —«— Opt

2 LV
l,

(O]

£ 1.5

c

35

o

3 11

N

©

=

s 05

zZ

O T T T T
0.00E+00 2.00E+09 4.00E+09 6.00E+09 8.00E+09 0

Normalized Utility
o o o o
N £ (o] (o]
:

Initial Energy min inear greedy

Simulation Results - DVS

DVS increases energy efficiency

Throws off adaptation

3 volt/freq:
5V, 1.0*fmax
4V, .75*fmax

3V, .35*fmax 0

-- extends runtime

‘—Q—Greedy —s— Linear —— Max Min —x— Opt ‘

0.00E+00 2.00E+09 4.00E+09 6.00E+09 8.00E+09

Initial Energy

Normalized Runtime

Simulation Results, conted

DVS compensation achieves desired runtime
with higher utility

‘—Q—Greedy —s— Linear —a— Max —<— Min —«— Opt ‘

mEDVS
2 7/ @ DVS-comp

0.5

0 L/ ‘ : ‘
0.00E+00 2.00E+09 4.00E+09 6.00E+09 8.00E+09
Initial Energy

,_\
|l (62}
Normalized Utility
o =)
o ol [l ol N ol
g _

Utility comparison between DVS
Adaptation w/ DVS Compensation compensation and w/o compensation

Implementation

Implemented on Linux 2.2
Periodic real-time support
PowerNow! driver
Real-time scheduler modules =
EQoS adaptation module | Scheduler Hook | Linu [Carnel
Battery monitoring module

VE Support

Currently supports Athlon, Duron, K6-2 processors that
Implement AMD+s PowerNow! Technology

EXxperiments

Measurements on a Compaqg Presario 1200Z

Implement RT version of Lame MP3 encoder
use quality parameter to vary QoS
multiple concurrent instances

Results follow trend observed in simulations

Conclusions

RT-DVS provides low-level CPU voltage control
Maintains timing guarantees for RT tasks
Significant energy savings, comparable to non-RT DVS

EQoS provides task/app adaptation in energy-
constrained real-time systems

Provides guidelines to best utilize available energy
among tasks

Frames energy adaptation as a tractable problem

Heuristics work nearly as well as optimal algorithms in
practice

Ongoing and Future Work

Fine-grained measurement of energy
consumption and its feedback to EQoS manger

New task model based on energy consumption

Energy consumption by components other than
CPU, such as memory, flash memories/micro-
disks, communication procotols (IEEE 802.11
and other sensor networking protocols)

Construction of and experimentation with a
network of iPags.

Algorithms -- Summary

Optimal solutions: dynamic programming (DP),
branch and bound (BB)

NP-hard

DP high memory overhead, runtime overhead

BB exponential upper bound on computation

Heuristics: LMCKP, Greedy
Under utilizes power budget
Very fast computation
Greedy still close to optimal

