Metropolis

Design Environment for Heterogeneous Systems

Luciano Lavagno
Cadence Berkeley Labs & Politecnico di Torino

Metropolis Project Team

m etropolis

Outline

System-level design scenario
Metropolis design flow

Meta-model syntax
— processes and media
— constraints and schedulers

Meta-model semantics
Conclusions

A Modern Car, an Electronic System

IVHS Infrastructure Multiplexed Systems
Clgllllular CBody |
/ one / ontro \

Navigation| INf0/Comms/[siereq/cD| [Suspensiof ~Vehicle [ransmission
~ AV Bus 7 ~ CAN Bus —~

GPS |—]Display ECU |—— ABS
(-

Wireless Communications/Data
Global Positioning

Electronic Toll Collection
Collision Avoidance

Vehicle ID Tracking

SW Architecture = Performance Modelling

Network Design/Analysis Function / Protocol Validation
Supplier Chain Integration

Design Roles and Interactions

Eonstraiﬁ

ernel
benchm

System
architect

E....Fystem specificatiil f..i 5 .. E

i - =

mncﬁon Detailed env. stract local
specificat model architect

'Algorithm+SW

developer

ub-function System
impleme i integrator

Platform
developer

System implementation

Design Scenarios

Metropolis Project " T—

» Goal: develop a formal design environment
— Design methodologies: abstraction levels, design problem formulations

— Design automation tools:
A modeling mechanism: heterogeneous semantics, concurrency
Formal methods for automatic synthesis and verification

e Participants:
— Cadence Berkeley Labs (USA): methodologies, modeling,
— UC Berkeley (USA): methodologies, modeling,
— Politecnico di Torino (ltaly): modeling,
— Universitat Politecnica de Catalunya (Spain): modeling,
— CMU (USA):
— Philips (Netherlands): methodologies (multi-media)
— Nokia (USA, Finland): methodologies (wireless communication)
— BWRC (USA): methodologies (wireless communication)
— BMW (USA, Germany): methodologies (fault-tolerant automotive controls)
— Intel (USA): methodologies (microprocessors)

Orthogonalization of concerns

Separate:

e functionality from architectural platform
(function requires services offered by architecture)

increased re-use

use same level of abstraction for HW and SW

design space exploration

drive synthesis algorithms (compiler, scheduler, ...)
separates behavior from performance (time, power, ...)
performance derives from mapping

e computation from communication

computation (functionality) is scheduled and compiled
communication (interfacing) is refined via patterns based on
mapping

Metropolis Framework

Function Design
pecificatio Constraints
\ Metropolis Infrastructure

Architecture

Specification

* Design methodology
* Meta model of computation
* Base tools

- Design imports

- Meta model compiler

- Simulation

Metropolis Formal Methods: Metropolis Formal Methods:
Synthesis/Refinement Analysis/Verification

Metropolis Framework: methodology

Function Design
pecificatio Constraints

Specification

\ Metropolis Infrastructure J

- Design methodology
* Meta model of computation
* Base tools

- Design imports

- Meta model compiler

- Simulation

Architecture

Metropolis Formal Methods: Metropolis Formal Methods:
Synthesis/Refinement Analysis/Verification

Functional Decomposition

MPEG Decoder

4

Communication

Refinement

g i

Dl
S s e nan e

SR

-y

L

. Al =
7

SR

g Ghdede de)

. D ——
Gl

S

!

e

o

e

ey st

T

CA

Lossy

CA

Refinement

Optimization

Metropolis Framework: meta-model

Function Design
pecificatio Constraints
\ Metropolis Infrastructure

* Design methodology

- Meta model of computation
- Base tools

- Design imports

- Meta model compiler

- Simulation

Architecture

Specification

Metropolis Formal Methods: Metropolis Formal Methods:
Synthesis/Refinement Analysis/Verification

Metropolis Meta Model

» Do not commit to the semantics of a particular Model of Computation (MoC)

o Define a set of “ 7

— specifications with many useful MoCs can be described using the building
blocks.

— unambiguous semantics for each building block.

— syntax for each building block B a language of the meta model.

» Represent behavior at all design phases; mapped or unmapped

Question: What is a good set of building blocks?

Metropolis Meta Model

The behavior of a concurrent system:

computation

e X—Z
« firing rule

processes

communication

- state
* methods to
- store data
- retrieve data

media

process P1{

port pX, pZ;

thread(){
/I condition to read X
// an algorithm for f(X)
// condition to write Z

}
}

coordination

» constraints on
concurrent actions

* action annotation with
quantity requests
(time, energy, memory)

algorithms to enforce
the constraints

constraints and
quantity managers

P1.pZ.write() ¢ P2.pX.read()

medium M{
int[] storage;
int space;
void write(int[] z)X{ ... }

int[] read(){ ... }

Netlist

Define

* processes, media, schedulers, netlists
» connections among the objects
 constraints

used also for specifying refinements

ﬁ)ubleStream

cO

c1

Communication and computation

refinement
4 RefintM)
refine ! N
2 [Byen)-
N Y,

Define a refinement “pattern”:

1. Define objects that constitute the refinement.
2. Define connections among the refinement objects.

3. Specify connections with objects outside the refinement netlist:

Some objects in the refinement may be internally created; others may be given externall

—, write a constructor of the refinement netlist for each refinement scenario.

Netlist after Refinement

\ // create mb, and then refine m0 and m
@p0© ByteM mb = new ByteM();

@co(@‘ RefIntM refm0 = new RefIntM(mO0, mb)
—@p1@|/ ReflntM refm1 = new ReflntM(m1, mb).

_@/@7

But, we need coordination:
- if pO has written to mb, cO must read
- if p2 has written to mb, ¢1 must reac

Constraints

Two mechanisms are supported to specify constraints:

1. Propositions over temporal orders of states
— execution is a sequence of states
— specify constraints using linear temporal logic
— good for functional constraints, e.g.

“if process P starts to execute a statement s1, no other process
can start the statement until P reaches a statement s2.”

2. Propositions over instances of transitions between states
— particular transitions in the current execution: called “actions”
— annotate actions with quantity, such as time, power.
— specify constraints over actions with respect to the quantities
— good for performance constraints, e.g.

“any successive actions of starting a statement s1 by process P
must take place with at most 10ms interval.”

Netlist after Refinement

<)

POp
—@P1©|/
P2

H©J/

S N
—

/I create mb, and then refine m0 and m
ByteM mb = new ByteM();

ReflntM refm0 = new ReflntM(mO0, mb),
ReflntM refm1 = new ReflntM(m1, mb).

But, we need coordination:
- if pO has written to mb, cO must read
- if p2 has written to mb, ¢1 must reac

Can be specified using the linear
temporal logic.

Constraints

. Propositions over temporal orders of states

State variables

* process.

- ins_tances of local variables of called
functions s

s2

- program counter:
{beg(s), end(s)} for each statement s
* medium
field instances

» execution (s1, s2, ...) : a linear (possibly infinite) order of states such that
- it starts from the initial state,

- each adjacent pair is a transition

Propositions on Temporal Order of States

* Linear Temporal Logic (LTL):
propositions over state variables
- temporal operators: X, U, F, G
- logical operators: &&, !, ||, ->, <->
- Itl() method to specify constraints
* Built-in constructs on the LTL:

excl, mutex, simul

constraints{...} can appear anywhere

in the meta-model programs.

wr: {
this

I1: n=1; space=0; storage=z;
}
rd: {

this
12: n=0; space=1; return storage;
}

constraints{
process p, q;
It(G(pc(p)==beg(wr) ->
F(pc(q)==end(rd))));

Constraints

2. Propositions over instances of transitions between states
* Action: instantiation of a transition in an execution (s1, s2, ...)

action a = (p, Sc, Sn, 0) 52

p : process object s1
Sc : current value of the program counter of p
Sn : next value of the program counter of p

o : occurrences of the transition sc § sn by p in the execution

* Quantity: annotated with the set A of actions of the current execution
- The domain D of the quantity, e.g. real for the global time
- The operations and relations on D, e.g. subtraction, <, =
- The relation between D and A, e.g. gt(a) denotes the global time of the action a
- Constraints on the quantity and actions, e.g.

for all actions a1, a2, if a2 follows a1 in the execution, gt(a1) < gt(a2)

Constraints using Actions

e public final class Action {
process p;
pcval sc, sn;
int o;

}

process P1{
port reader pX, pY;
port writer pZ;
thread(){
while(true){

await(pX.n()>0 && pY.n()=0)
[pX.reader,pY.reader]
I1: z = f(pX.read(), pY.read());
12: pZ.write(z);

public class Gtime extends Quantity {

static double t;

double sub(double t2, double t1){...}
boolean equal(double t1, double t2){ ... }
boolean less(double t1, double t2) ... }
double gtime(Action a){ ... }

constraints{ ... }

constraints{
Action a1, a2;
Gtime gt;
Ifo(a1.p()==a2.p() && a1.sn()==beg(I1)
&& a2.sn==end(12) && a1.0()== a2.0()
-> gt.gtime(a2) - gt.gtime(a1) < 5);

Ifo(al.p()==a2.p() && a1.sn()==beg(l1)

consti@nte sn==beg(I1)
mag&i8asns{j (. H)Sk1
maxRafedtind]h2) - gt.gtime(a1) < 10);

}

Schedulers

e Scheduler specifies an algorithm for some constraints.

P1 | P2

: scheduler S$1{
l l port SMsched port0, port1;

void doScheduling(void){
Il priority scheduling

}

}

e The algorithms are used during simulation.

e Typically, later in the design phase, thread() is added to a scheduler,
— to specify protocols to communicate with the controlled processes,
— to call doScheduling() as a sub-routine.

At that point, the scheduler becomes a process.
e Schedulers may be hierarchical.

Execution semantics

e Normal approach (VHDL, System(C, ...):
1. define simulation algorithm
2. define suitable language and semantics
3. try to synthesize, verify, refine
4. oops... semantics gap!
e Our approach:
1. define semantics for synthesis, refinement
2. figure out how to simulate it
3. oops... inefficient simulation?

Meta-model: architecture netlist

Architecture netlist specifies configurations of architecture components.

Each netlist constructor

- instantiates architectural components,

- connects them, MyArchNetlist s

- takes as input mapping processes. R SO

Arbiter

Arbite

Meta-model: mapping processes

Function process Mapping process
process P{ process MapP{

port reader X; port CpuService Cpu;

port writer Y; void readCpu(){

thread(){ Cpu.exec(); Cpu.cpuRead();

while(true){ }

void mapf(){ ...}

z = f(X.read());
Y.write(z);

1

thread(){
while(true){

await {
(true; ; ;) readCpu();
(true; ; ;) mapf();
(true; ; ;) readWrite();
}

B(P, X.read) <=> B(MapP, readCpu); E(P, X.read) <=> E(MapP, readCpu
B(P, f) <=> B(MapP, mapf); E(P, f) <=> E(MapP, mapf);

Meta-model: mapping netlist

AyMapNetlist
B(P1, M.write) <=> B(mP1, mP1.writeCpu); E(P1, M.write) <=> E(mP1, mP1.writeCpu);
B(P1, P1.f) <=> B(mP1, mP1.mapf); E(P1, P1.f) <=> E(mP1, mP1.mapf);
B(P2, M.read) <=> B(P2, mP2.readCpu); E(P2, M.read) <=> E(mP2, mP2.readCpu);
B(P2, P2.f) <=> B(mP2, mP2.mapf); E(P2, P2.f) <=> E(mP2, mP2.mapf);

MyFncNetlist MyArchNetlist _|]

®P1@_@__®P2 ? ?

C Env2)

Meta-model: platforms

interface MyService extends Port { int myService(int d); }

medium AbsM implements MyService
int myService(intd) { ... }

fine(AbsM, MyMapN« ' M.mySefvice) 8{> BEb BreRo
. i : £ F @2 Bowjite
yMapNetlist? NyMapNetlist1

3(P1, M.write) <=> B(mP1, mP1.writeCpu); B(P1, M.write) <=> B(mP1, mP1.writeCpu);

;i§1E(Fr‘r?Fq j=> B(mP1, mP§.mapf); E(P1, P1.f) B(P1, P1.f) <=> B(mP1, mP1.mapf); E(P1, P1.f) <=> E(mP"
3(P2, M.read) <=> B(P2, mP2.readCpu); :é:g: ré':?)a:‘l:;r:éz,zh:gz.zr:::g?pu);

(P2, P2.f) <=> E(mP2, mP{.mapf);

y%y%’ I MYF% N

Meta-model: platforms

A set of mapping netlists, together with constraints on event relations to a given
interface implementation, constitutes a platform of the interface.

interface MyService extends Port { int myService(int d); }

medium AbsM implements MyService
int myService(intd) { ... }

yMapNetlist]
3(P1, M.write) <=> B(mP1,

(i) 5 BmPt. mP
(P2, M.read) <=> B(P2, m
(P2, P2.f) <=> E(mP2, mP

I'\J

mP1.writeCpu);
.mapf); E(P1, P1.f)

P2.readCpu);
.mapf);

yA

K

M.mySefvice) 8¢ BEb Blirepo
- iag) £ F(R2 Wywiite
NyMapNetlist1

B(P1, M.write) <=> B(mP1, mP1.writeCpu);

B(P1, P1.f) <=> B(mP1, mP1.mapf); E(P1, P1.f) <=> E(mP1
B(P2, M.read) <=> B(P2, mP2.readCpu);

E(P2, P2.f) <=> E(mP2, mP2.mapf);

Meta-model: recursive platforms

B(Q2, S.cdx) <=> B(Q2, mQ2.excCpu); E(Q2, M.cdx) <=> E(mQ2, mQ2.excCpu);
B(Q2, Q2.f) <=> B(mQ2, mQ2.mapf); E(Q2, P2.f) <=> E(mQ2, mQ2.mapf);

> &P ®

! 2 - —
@ e :
‘ Q ‘

MyMapNetlist1

B(P1, M.write) <=> B(mP1, mP1.writeCpu);

B(P1, P1.f) <=> B(mP1, mP1.mapf); E(P1, P1.f) <=>E(mP1,)
B(P2, M.read) <=> B(P2, mP2.readCpu);

E(P2, P2.f) <=> E(mP2, mP2.mapf);

B2 Mipagl <= BP2:

Execution semantics

e Processes take actions

— statements and function calls are actions
* e.g. y=x+port.f();, x+port.f(), port.f()
— only calls to media functions are observable actions

e Behaviors are sequences of vectors of events

— events are beginning of an action (B port.f()), end of an
action (E port.f()), no-op (N),

— one event per (sequential) process in a vector

e A sequence of vectors of events is a legal
behavior if it
— satisfies all constraints

— Is accepted by all action automata
(one for each action of each process)

Action automata

® y=x+1;
B y=x+ B x+1 Ex+1 Ey=x+1
y=x+1 y () C Y_ >
.. y._ x+1 |
write y
B x+1 Ex+1 Ey=x+1
O——O——O~iZamy—
xX+1
Vx+10
Y 0
X 0

Action automata

® y=x+1;
B y=x+ B x+1 E x+1 Ey=x+1
y=x+1 y (C) C Y_ >
Y:-= x+1 .
write y
c Ey=x+1
O——C iy
B x+1 E x+1
x+1 _ V.., i=x+1
write X
c E x+1
>
V., :=any
Vx+1 0
Y 0
X 0

By=x+1 N Bx+1 N N

Action automata

® y=x+1,
B y=x+ B x+1 Ex+1 Ey=x+1
y=x+1 y (C) () Y_ >
.. y._ x+1 |
write y
B x+1 Ex+1 Ey=x+1
0 . c y:=any g
x+1
Vx+10 1
y O 0
X 0 0

By=x+1 N Bx+1 N N E x+1

Action automata

o y=x+1;
B y=x+ B x+1 Ex+1 Ev=x+1
y=x+1 (O O O
.. y._ x+1 |
write y
B x+1 Ex+1 Ey=x+1
© @ Vizany
x+1
Vx+10 1 1
Y 0 0 1
X 0 0 0

By=x+1 N Bx+1 N N Ex+1 Ey=x+1

Action automata

® y=x+1;
B y=x+ B x+1 Ex+1 Ey=x+1
y=x+1 y () C Y_ >
.. y._ x+1 |
write y
B x+1 Ex+1 Ey=x+1
O——O——O~iZamy—
xX+1
Vx+10
Y 0
X 0

Action automata

® y=x+1;
B y=x+ B x+1 E x+1 Ey=x+1
y=x+1 y (C) C Y_ >
Y:-= x+1 .
write y
c Ey=x+1
O——C iy
B x+1 E x+1
x+1 _ V.., i=x+1
write X
c E x+1
>
V., :=any
Vx+1 0
Y 0
X 0

By=x+1 N Bx+1 N

Action automata

o y=x+1;
B y=x+ B x+1 E x+1 Ey=x+1
y=x+1 y (C) C Y_ >
Y:-= x+1 .
write y
c Ey=x+1
(© () Visany
B x+1 . E x+1
x+1 : V.., i=x+1
write
E x+1
>
V., :=any
Vx+1 0
Y 0
X 0

By=x+1 N Bx+1 N N

Action automata

o y=x+1;
B y=x+ B x+1 Ex+1 Ey=x+1
y=x+1 y (C) () Y_ >
.. y._ x+1 |
write y
B x+1 Ex+1 Ey=x+1
0 . c y:=any g
x+1
Vx+10 5
y O 0
X 0 0

By=x+1 N Bx+1 N N Ex+1

Action automata

® y=x+1;
B y=x+ B x+1 E x+1 Ev=x+1
y=x+1 4O O O
.. y._ x+1 |
write y
B x+1 Ex+1 Ey=x+1
O——O——O~iZamy—
xX+1
Y 0 0 5
X 0 0 0

By=x+1 N Bx+1 N N Ex+1 Ey=x+1

Semantics of await

await {
(X.n()>0;X.writer; X.writer) comp: z = f(X.read());
(Y.space()>0;Y.reader;Y.reader) Y.write(z);

}

start X.writer
(true X.n()>0 A — active X.writer)/ o

B Comp:u- E Comp:lll

B await... ’<C> E await...

— start Y.reader (€

(true Y.space()>0 A — active Y.reader) / E Y.write(2)
B Y.write(z)

Semantics summary

e Processes run sequential code concurrently,
each at its own arbitrary pace

e Read-Write and Write-Write hazards may cause
unpredictable results

— atomicity has to be explicitly specified
e Progress may block at synchronization points
— awaits

— function calls and labels to which awaits or
LTL constraints refer

Why ...

e ... bother about concurrency and hazards?
— they are expensive and dangerous in reality
e ... consider non-determinism and constraints?

— want to express design freedom simply and
precisely

e ... adopt a new synchronization primitive (await)?

— don’t want to bias towards a particular
implementation

— avoid synchronization objects, talk about actions of
processes

Why ...

... because we want a framework:

e that enables synthesis and refinement by allowing
precise expression of design space to be explored,
in an unbiased way

e that enables platform-based design by allowing
accurate representation of platform capabilities and
limitations

Cost

e C, SystemC, HDL’s all have semantics that reflect
their execution engines
(CPU, co-routines, event queue)

— not suitable for us,
— does it improve simulation performance?

— NO, simulating the meta-model can be as
efficient as any multi-threaded execution

Simulation Task

g oL
O~

O—0—0
e Choose one execution satisfying awaits and
constraints
e Choice may be biased:
—to minimize context switching
—to discover corner cases

Sequential Simulation Algorithm

repeat {

pick a process

run it for a while

} until done

C++

pick one
enabled
process

until it is
blocked

minimize
context
switches

JAVA, SystemC

pick several enabled
processes, and let
JAVA or SystemC
decide in which order
to execute them

until the next
synchronization
point

explore corner
cases,
parallelize

Metropolis Framework: tools

Function Design
pecificatio Constraints
\ Metropolis Infrastructure

Architecture

Specification

* Design methodology
* Meta model of computation
* Base tools

- Design imports

- Meta model compiler

- Simulation

Metropolis Formal Methods: Metropolis Formal Methods:
Synthesis/Refinement Analysis/Verification

rormal iviodels
for analysis and synthesis

Formal model: derived from the meta-model for applying formal methods

* Mathematical formulations of the semantics of the meta model:
- each construct ('if’, ‘for’, ‘await’, ...)
- sequence of statements
- composition of connected objects
- the semantics may be abstracted

* Restrictions on the meta model

Formal methods (verification and synthesis) applicable on given models

Example of formal model: Petri nets

await(pX.n()>=2)[pX.reader]
for(i=0; i<2; i++) x[i]=pX.read();

Restriction:

condition inside await is conjunctive.

éormal Methods on Petri nets:

« analyze the schedulability

~

 analyze upper bounds of storage sizes

 synthesize schedules

_

reader lock

/

reader_unlock

pX.n()

x[i]=pX.read();
i++;

end of await

Example: quasi-static scheduling

Specify a network of processes

Translate to the computational model
— Petri net

Find a “schedule” on the Petri net

Translate the schedule to a new set of
processes

Design automation tools

Work in progress:

Quasi-static scheduling for multiple processors
Hardware synthesis from concurrent processes
Processor micro-architecture exploration

Communication architecture design
(on-chip and off-chip)

Fault-tolerant design for safety-critical
applications:functionality and architecture
definition and mapping

Communication buffer memory sizing and
allocation

Metropolis Framework
Function Design
pecificatio

_ T

Metropolis Infrastructure

Architecture

Specification

» Design methodology
» Meta model of computation
 Base tools

- Design imports

- Meta model compiler

- Simulation
Metropolis: Synthesis/Refinement Metropolis: Analysis/Verification
» Compile-time scheduling of concurrency e Static timing analysis of reactive systems
» Communication-driven hardware synthesis * Invariant analysis of sequential programs
» Protocol interface generation * Refinement verification

* Formal verification of embedded software

Metropolis Infrastructure

Meta-Model
Compiler

RN
5 o i

Summary

Metropolis: _mej_mp_Q_US

e |[nterdisciplinary, intercontinental project (10 institutions in 5 countries)

e Goal:
— Design methodologies: abstraction levels, design problem formulations

— Design automation tools:
formal methods for automatic synthesis and verification,

a modeling mechanism: heterogeneous semantics, concurrency

e Primary thrusts:

— Metropolis Meta Model:
 Building blocks for modular descriptions of heterogeneous semantics
* Modeling mechanism for function, architecture, and constraints
— Design Methodology:
* Multi-media digital systems
* Wireless communication
* Fault-tolerant automotive systems
* Microprocessors

— Formal Methods and design tools

For more information...

e Metropolis home page:
http://www.gigascale.org/metropolis/

e Updated version of the slides:
http://polimage.polito.it/~lavagno/metro mpsoc 03.ppt

e Additional (free ©) advertising: open-source
asynchronous implementation of DLX processor, ready
for technology map, place and route:
http://www.ics.forth.gr/carv/aspida

