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Overview 

• introduction – MPSOC architecture trends

• implementation languages and architectures

• architecture model applications 

• models for formal design methods

• summary
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MPSOC architecture - trends

• system function integration 
– reactive and transformative parts
– function IP, legacy code, new functions

• component and subsystem reuse (IP)
– increased design productivity and reduced development cost 

• programmable platforms 
– improved design productivity 
– increased volume
– examples: network processors, multi-media platforms, 

automotive platforms, game platforms 
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MPSOC architecture - challenges

• design specialization 
– increased performance
– reduced power consumption
– lower cost and size

• design flexibility
– late changes, platforms, reuse

• HW and SW IP integration
– result of reuse

⇒ MPSOC architectures are heterogeneous
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MPSOC architectures are heterogeneous

• different processing element types
– processors, weakly programmable coprocessors, IP

components 

• different interconnection networks and communication 
protocols

• different memory types

• different scheduling and synchronization strategies
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Example: Configurable platform 
(NexperiaTM)

• NexperiaTM DVP hardware architecture (source: Th. Claasen, Philips, 
DAC 2000)
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Nexperia example: Viper Setop Box
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VIPER chip layout - reuse and integrate

• VIPER Hardmacros (supplied)

• VIPER adaptable softmacros „Chiplets“
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Managing HW architecture complexity 

• development of application programmer interfaces (API) to 
hide complexity from application programmer and improve 
portability

• specialized RTOS to control resource sharing and 
interfaces

⇒ complex multi-level HW/SW architecture
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Software architecture example
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• layered software architecture with HW dependent SW and API

⇒ MPSOC SW is heterogeneous
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Application & Architecture

implementation language
architecture layer

application 
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subsystem 2
Simulink
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Implementation Language Semantics

system of (communicating) processes

shared variable
communication

P4

P3

P2

P1 shared 
memory

„a = b + c;“„g = a * c;“

message passing 
communication

P4

P3P2

P1

„send (a);“

„receive (a);“

VHDL, SystemC, SpecCC, C++, Java, (SystemC)
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Function Design →→→→ Implementation 
Language

manual implementation
/ code generation

system level 
language

SDL, Simulink, Lustre, .....

examples: 
• Real-Time Workshop
• Tau

P4

P3
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P1 shared 
memory

„a = b + c;“„g = a * c;“ P4

P3P2

P1

„send (a);“

„receive (a);“

implementation 
language
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„Lossy“ function translation

• information lost in transformation
– state dependent process behavior 

• hidden in processes
– process coordination

• expresses dependency and activation rules
• important for efficient HW/SW architecture implementation   

• example: data flow semantics →→→→ RTOS process activation
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Token-to-event translation problem 
• Application view

– complex activation 
dependencies

– no timing (partial order)

• Scheduling analysis 
view
– simple activation 

dependencies 
(e.g. task graphs)

– event timing CPU 2CPU 1
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event 
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1
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?What is an activating event?
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Coordination must be kept in translation

• solution for example e.g. using token arrival curves
(Jersak/Ernst, DAC 03)

• semantic preserving models needed to keep information 
– Metropolis, Funstate, SPI
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RTOS
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Resource sharing

• HW/SW resources are shared 
– several SW processes mapped to one processing element

⇒ task scheduling
– mapping several communications mapped to one 

communication path
⇒ communication (bus) scheduling

– several process data mapped to one memory 
⇒ memory assignment (space & time) 
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Resource sharing - 2

• resource sharing strategies
– in time

• execution sequence -> scheduling
– in space

• memory assignment
• bus wire assignment
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Architecture modeling applications

• implementation verification 

• performance validation
– response time 
– throughput (process exec/time unit)
– bottleneck detection

• design optimization
– design space exploration
– power optimization

• cost determination (not this lecture)
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MPSOC architecture modeling 
requirements 

• given 
– an application and its environment modeled by a set of 

communicating processes
– a heterogeneous HW/SW target architecture
– an implementation of the processes on the architecture

• model
– the HW/SW architecture information flow 
– system timing (and power consumption)
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Modeling Challenges

• model complexity
– HW/SW system state space
– simulation run-times and analysis complexity
– model abstraction

• activation modeling
– simulation pattern development
– environment modeling

• complex non-functional interdependencies
– shared communication
– shared components
– shared memory
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Complex non-fuctional interdependencies
• resource sharing introduces complex non-functional 

interdependencies („cross talk“)

CoPro

VLIW MEMIPIP IPIPMEM

RISC MEM DSP

SYSTEM BusSYSTEM Bus

Application B

Application A
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Interdependency example

• anomalies: best case can become worst case

CPU1M1

BUS BBUS B

min execution time
⇒ high bus load

max execution time
⇒ low bus load

P1

tbc1 twc1
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Modeling Challenges - cont‘d
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• complex design objectives and constraints
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MPSoC modeling - goals

• current goal: Target architecture co-simulation
• supports system-level validation
• uses library of component and communication models 
• requires executable code and software platform
• extensive simulation required for complex MPSoC or 

distributed systems

• research goal: support formal methods for design space 
exploration, system-level optimization and analysis
• different modeling approach required
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Architecture model structure

process
execution model

• execution path – data dependent
• path execution – arch. dependent
• communication – data & arch. dep.

P1 P2

activation

P1

• resource sharing strategy
• process activation
• component state (caches)

M

IP

M P M P

M

component & 
communication
execution model

system
model

• communication pattern
• shared memory access
• environment model

influenced bymodel type
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Process execution model

then 
...

else {
send(..);
receive (...);

... }

for { ...

..}

if ... b1
b2

b3

b4

F• timing and communication
depend on
– execution path
– architecture
– communication

mechanism and volume
({b1, …, bn} basic blocks)
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Process timing and communication

• process timing and communication can be evaluated by
– simulation/performance monitoring

• trigger points at process beginning and end
• stimuli required, e.g. from component design 
• data dependent execution →→→→ upper and lower timing bounds

– simulation challenges
• coverage?
• cache and context switch overhead due to run-time scheduling

with process preemptions
• influence of run-time scheduling depending on external event

timing
– formal analysis of individual process timing

• serious progress in recent years
– discussion see book chapter and literature
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Architecture model structure

process
execution model

• execution path – data dependent
• path execution – arch. dependent
• communication – data & arch. dep.

P1 P2

activation

P1

• resource sharing strategy
• process activation
• component state (caches)

M

IP

M P M P

M

component & 
communication
execution model

system
model

• communication pattern
• shared memory access
• environment model

influenced bymodel type
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Component and communication execution
model

• Resource sharing strategy 
– process and communication scheduling
– static execution order
– time driven scheduling

• fixed
• dynamic

– priority driven scheduling
• static priority assignment
• dynamic priority assignment

• timing depends on environment model
– frequency of process activations or communication
– solution for activation transformation proposed in 

(Jersak/Ernst DAC 03)
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Ex 1: Time driven scheduling

• time division multiple access (TDMA) 
– periodic assignment of fixed time slots
– applicable to pe or ce

P1 P2 P3 P4 P1 P2 P3 P4

tpTDMA

P1

P1-P4

P2

P4

P3

12

tP1 tP4

13

tpTDMA

process preempted

TDMA example

12

13

tP2

10

tP3

5

10

5
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TDMA

• predictable and independent performance down scaling 
allows to merge individual solutions

• time slot size adaptable to different service levels 

• generates output jitter as a result of execution times

• problems
– utilization
– extended deadlines
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Ex 2: Static priority with arbitrary 
deadlines

• complex execution sequence - may create output bursts

• found in communication scheduling and multiprocessing

busy period

T1

T2

T2

T2 T2

P3

P1

P2

priority analysis solution e.g. by Lehoczky
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RTOS Overhead
Example: Static priority scheduling (ERCOSEKTM)

tA,resp

tB,resp

RTOS overhead increases response times
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RTOS and scheduling effects combined
tA,resp tA,resp tA,resp

tB,resp tB,resp



19

MPSOC 2003 R. Ernst, TU Braunschweig 37

Cache effects

• cache contents replaced by other processes
→ increased execution time
→ must be considered in analysis

• scratch pad memories as alternative

MPSOC 2003 R. Ernst, TU Braunschweig 38

CoPro

System model

VLIW MEMIPIP IPIPMEM

RISC MEM DSP

SYSTEM BUSSYSTEM BUS

static execution
order scheduling

static priority
schedulingFCFS scheduling

earliest deadline
first scheduling

TDMA scheduling

proprietary
(abstract info)
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Component coupling

• independently scheduled subsystems are coupled by data
flow

⇒ subsystems coupled by stream of events

⇒ coupling corresponds to event propagation

SB 1

scheduling 
SB 1            

P2

P1

SB 2 

scheduling 
SB 2

P4

P3
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Architecture model structure

process
execution model

• execution path – data dependent
• path execution – arch. dependent
• communication – data & arch. dep.

P1 P2

activation

P1

• resource sharing strategy
• process activation
• component state (caches)

M

IP

M P M P

M

component & 
communication
execution model

system
model

• communication pattern
• shared memory access
• environment model

influenced bymodel type
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System timing analysis with event propagation

• analysis scope extension to several subsystems
– holistic approach, e.g. Tindell and Pop/Eles
– used for automotive software

• event model generalization for a set of scheduling strategies
– arrival and service curves Chakratborty/Thiele
– new analysis approaches needed, e.g. Baruah
– used for network processor design

• event stream model adaptation
– use abstract interface stream properties to couple local analysis
– used e.g. for automotive software
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Event stream models

• periodic events

• periodic events with jitter

• events with minimum inter arrival times
– burst events, packets, sporadic events, etc. 
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Event stream example

system
network

subsystem 1

subsystem 2
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Event propagation and analysis principle

environment model 

local analysis

derive output event model 

transform to expected input event model 

until convergence or non-schedulability
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Example revisited

system
network

subsystem 1

subsystem 2

Distortion

non-functional dependency cycle
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Dependency cycle

system
network

resynchronization 
reduces jitter
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Some open issues

• system mode dependent timing
– different load situations and response time requirements
– tagged tokens -> tagged event streams

• (complex) hierarchical prcess and communication 
scheduling

• global scheduling optimization
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Architecture model summary

• current MPSOC architecture models are primarily used for
simulation

• growing complexity suggests formal methods for
optimization and analysis

• emerging formal approaches supported by multi-level
architecture modeling

• abstract event flow model enables heterogeneous system
analysis
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Literature

• see: www.spi-project.org
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