
1

MPSOC 2003 R. Ernst, TU Braunschweig 1

MPSOC Architecture Modeling

R. Ernst

TU Braunschweig

MPSOC 2003 R. Ernst, TU Braunschweig 2

Overview

• introduction – MPSOC architecture trends

• implementation languages and architectures

• architecture model applications

• models for formal design methods

• summary

2

MPSOC 2003 R. Ernst, TU Braunschweig 3

MPSOC architecture - trends

• system function integration
– reactive and transformative parts
– function IP, legacy code, new functions

• component and subsystem reuse (IP)
– increased design productivity and reduced development cost

• programmable platforms
– improved design productivity
– increased volume
– examples: network processors, multi-media platforms,

automotive platforms, game platforms

MPSOC 2003 R. Ernst, TU Braunschweig 4

MPSOC architecture - challenges

• design specialization
– increased performance
– reduced power consumption
– lower cost and size

• design flexibility
– late changes, platforms, reuse

• HW and SW IP integration
– result of reuse

⇒ MPSOC architectures are heterogeneous

3

MPSOC 2003 R. Ernst, TU Braunschweig 5

MPSOC architectures are heterogeneous

• different processing element types
– processors, weakly programmable coprocessors, IP

components

• different interconnection networks and communication
protocols

• different memory types

• different scheduling and synchronization strategies

M

CoP

M

M

PDSP

M

P

MPSOC 2003 R. Ernst, TU Braunschweig 6

Example: Configurable platform
(NexperiaTM)

• NexperiaTM DVP hardware architecture (source: Th. Claasen, Philips,
DAC 2000)

SDRAMSDRAM

TM-core
D$

I$

TriMedia CPU

DEVICE I/P BLOCKDEVICE I/P BLOCK

DEVICE I/P BLOCKDEVICE I/P BLOCK

DEVICE I/P BLOCKDEVICE I/P BLOCK

.

.

.

DVP System Silicon

VLIW Media
Processor:
• 100 to 300+ MHz
• 32-bit or 64-bit

Nexperia
System Busses
• PI bus
• Memory bus

32-128 bitPI
 B

U
S

MMI

D
VP

 M
EM

O
R

Y
B

U
S

DEVICE I/P BLOCKDEVICE I/P BLOCK

core
D$

I$

MIPS CPU

DEVICE I/P BLOCKDEVICE I/P BLOCK.

.

.
DEVICE I/P BLOCKDEVICE I/P BLOCK PI

 B
U

S

General Purpose
RISC Processor
• 50 to 300+ MHz
• 32-bit or 64-bit

Library of
Device Blocks
• Image

coprocessors
• DSPs
• UART
• 1394
• USB

•…and more

TriMediaTMMIPSTM

4

MPSOC 2003 R. Ernst, TU Braunschweig 7

Nexperia example: Viper Setop Box
External SDRAM

Interrupt controller

Enhanced JTAG

Universal async.
receiver/transmitter

(UART)

Universal serial bus

IC debug

Clocks

CPU debug

ISO UART

Reset

MIPS
(PR3940)

CPU

TriMedia
C-Bridge

Memory controller

Fast C-Bridge

TriMedia
(TM32)
CPU

MIPS bridge

IEEE 1394
link layer controller

High-performance
2D-rendering engine

MIPS C-Bridge

I²C

Exp. bus interface
unit PCI/XIO

CRC
DMA

Adv. image
composition
Processor

MPEG-2
video decoder

Video input
processor

Memory-based
scaler

MPEG
system proc.

C-bridge

Interrupt ctrl.

Audio I/O

Sony Philips
Digital I/O

Transport stream
DMA

General-purpose
I/O

Synchronous
serial interface

Fa
st

PI
bu

s

M
IP

S
PI

bu
s

M
em

.
M

gm
t.

IF
bu

s

Tr
iM

ed
i a

PI
 b

u s

D$

I$

D$

I$

MPSOC 2003 R. Ernst, TU Braunschweig 8

VIPER chip layout - reuse and integrate

• VIPER Hardmacros (supplied)

• VIPER adaptable softmacros „Chiplets“

5

MPSOC 2003 R. Ernst, TU Braunschweig 9

Managing HW architecture complexity

• development of application programmer interfaces (API) to
hide complexity from application programmer and improve
portability

• specialized RTOS to control resource sharing and
interfaces

⇒ complex multi-level HW/SW architecture

MPSOC 2003 R. Ernst, TU Braunschweig 10

Software architecture example

Chip Bus

core

RTOS

I/O Int Bus-
CTRL

timer
timer

drivers

RTOS-APIs

application

periphery

cache

mem
private

private

private

private

sh
ar

ed

hardware

software

architecture

application

• layered software architecture with HW dependent SW and API

⇒ MPSOC SW is heterogeneous

ce1

pe1

API

6

MPSOC 2003 R. Ernst, TU Braunschweig 11

Application & Architecture

implementation language
architecture layer

application
„articulation point“

subsystem 2
Simulink

input
language 2

subsystem 3

subsystem 1

IP

UML

application
development

application layer

Application:
„Function“

M

CoP

M

M

PDSP

M

P

core

RTOS

I/O Int Bus-
CTRL

timer
timer

drivers

RTOS-APIs

application

Target HW/SW
architecture

implementation

MPSOC 2003 R. Ernst, TU Braunschweig 12

Implementation Language Semantics

system of (communicating) processes

shared variable
communication

P4

P3

P2

P1 shared
memory

„a = b + c;“„g = a * c;“

message passing
communication

P4

P3P2

P1

„send (a);“

„receive (a);“

VHDL, SystemC, SpecCC, C++, Java, (SystemC)

7

MPSOC 2003 R. Ernst, TU Braunschweig 13

Function Design →→→→ Implementation
Language

manual implementation
/ code generation

system level
language

SDL, Simulink, Lustre,

examples:
• Real-Time Workshop
• Tau

P4

P3

P2

P1 shared
memory

„a = b + c;“„g = a * c;“ P4

P3P2

P1

„send (a);“

„receive (a);“

implementation
language

MPSOC 2003 R. Ernst, TU Braunschweig 14

„Lossy“ function translation

• information lost in transformation
– state dependent process behavior

• hidden in processes
– process coordination

• expresses dependency and activation rules
• important for efficient HW/SW architecture implementation

• example: data flow semantics →→→→ RTOS process activation

8

MPSOC 2003 R. Ernst, TU Braunschweig 15

Token-to-event translation problem
• Application view

– complex activation
dependencies

– no timing (partial order)

• Scheduling analysis
view
– simple activation

dependencies
(e.g. task graphs)

– event timing CPU 2CPU 1

P1 P2

P4 P3

P5 P6

event
model

event
model

Prio: 1

Prio: 3

Prio: 2

Slot: 2

Slot: 3

Slot: 1

event
model

event
model

event
model

event
model

event
model

event
model

PP PC

1
2 [2,5][2,3] FIFO

?What is an activating event?
���� need transformation

MPSOC 2003 R. Ernst, TU Braunschweig 16

Coordination must be kept in translation

• solution for example e.g. using token arrival curves
(Jersak/Ernst, DAC 03)

• semantic preserving models needed to keep information
– Metropolis, Funstate, SPI

9

MPSOC 2003 R. Ernst, TU Braunschweig 17

RTOS

SW-
libraries

(drivers etc.)

API, HAL
RTOS

processes

Implementation Language →→→→ HW/SW
Architecture

application
SW

system

P4

P3P2

P1

P4

P3

P2

P1 shared
memory

B3B2

B1
B4

C, SystemC, ...

HW resourcesH1 H2

MPSOC 2003 R. Ernst, TU Braunschweig 18

Resource sharing

• HW/SW resources are shared
– several SW processes mapped to one processing element

⇒ task scheduling
– mapping several communications mapped to one

communication path
⇒ communication (bus) scheduling

– several process data mapped to one memory
⇒ memory assignment (space & time)

10

MPSOC 2003 R. Ernst, TU Braunschweig 19

Resource sharing - 2

• resource sharing strategies
– in time

• execution sequence -> scheduling
– in space

• memory assignment
• bus wire assignment

MPSOC 2003 R. Ernst, TU Braunschweig 20

Architecture modeling applications

• implementation verification

• performance validation
– response time
– throughput (process exec/time unit)
– bottleneck detection

• design optimization
– design space exploration
– power optimization

• cost determination (not this lecture)

11

MPSOC 2003 R. Ernst, TU Braunschweig 21

MPSOC architecture modeling
requirements

• given
– an application and its environment modeled by a set of

communicating processes
– a heterogeneous HW/SW target architecture
– an implementation of the processes on the architecture

• model
– the HW/SW architecture information flow
– system timing (and power consumption)

P P P
M

CoP

M

M

PDSP

M

P

MPSOC 2003 R. Ernst, TU Braunschweig 22

Modeling Challenges

• model complexity
– HW/SW system state space
– simulation run-times and analysis complexity
– model abstraction

• activation modeling
– simulation pattern development
– environment modeling

• complex non-functional interdependencies
– shared communication
– shared components
– shared memory

12

MPSOC 2003 R. Ernst, TU Braunschweig 23

Complex non-fuctional interdependencies
• resource sharing introduces complex non-functional

interdependencies („cross talk“)

CoPro

VLIW MEMIPIP IPIPMEM

RISC MEM DSP

SYSTEM BusSYSTEM Bus

Application B

Application A

MPSOC 2003 R. Ernst, TU Braunschweig 24

Interdependency example

• anomalies: best case can become worst case

CPU1M1

BUS BBUS B

min execution time
⇒ high bus load

max execution time
⇒ low bus load

P1

tbc1 twc1

13

MPSOC 2003 R. Ernst, TU Braunschweig 25

Actuatorsystem busSensor

RTOS

I/O int bus-
CTRL

timer
timercore

drivers

RTOS-APIs

application

cache

MEM
RTOS

core

drivers

RTOS-APIs

application

I/Ointbus-
CTRL

timer
timer

Release
Airbag

Modeling Challenges - cont‘d

Crash

PctrlCPsens. PdetcC
C

Pact.C
C

Reaction time of airbag after crash ?

tcom
+ tdrv

=
tAPI

+ tprocess
+ tAPI

=
tdrv

+ tcom
+ tdrv

=
tAPI

+ tprocess
+ tAPI

=
tdrv

+ tcom

=
tsenstcrash + tcsens + tdetc + tfbus + tcact + tairbag+ tact+ + tctrl tact+ tairbag+

physical delay

tsens +tcrash +

physical delay tcom
+ tdrv

tAPI
+ tprocess
+ tAPI

tdrv
+ tcom
+ tdrv

tAPI
+ tprocess
+ tAPI

tdrv
+ tcom

cache

MEM

• complex design objectives and constraints

MPSOC 2003 R. Ernst, TU Braunschweig 26

MPSoC modeling - goals

• current goal: Target architecture co-simulation
• supports system-level validation
• uses library of component and communication models
• requires executable code and software platform
• extensive simulation required for complex MPSoC or

distributed systems

• research goal: support formal methods for design space
exploration, system-level optimization and analysis
• different modeling approach required

14

MPSOC 2003 R. Ernst, TU Braunschweig 27

Architecture model structure

process
execution model

• execution path – data dependent
• path execution – arch. dependent
• communication – data & arch. dep.

P1 P2

activation

P1

• resource sharing strategy
• process activation
• component state (caches)

M

IP

M P M P

M

component &
communication
execution model

system
model

• communication pattern
• shared memory access
• environment model

influenced bymodel type

MPSOC 2003 R. Ernst, TU Braunschweig 28

Process execution model

then
...

else {
send(..);
receive (...);

... }

for { ...

..}

if ... b1
b2

b3

b4

F• timing and communication
depend on
– execution path
– architecture
– communication

mechanism and volume
({b1, …, bn} basic blocks)

15

MPSOC 2003 R. Ernst, TU Braunschweig 29

Process timing and communication

• process timing and communication can be evaluated by
– simulation/performance monitoring

• trigger points at process beginning and end
• stimuli required, e.g. from component design
• data dependent execution →→→→ upper and lower timing bounds

– simulation challenges
• coverage?
• cache and context switch overhead due to run-time scheduling

with process preemptions
• influence of run-time scheduling depending on external event

timing
– formal analysis of individual process timing

• serious progress in recent years
– discussion see book chapter and literature

MPSOC 2003 R. Ernst, TU Braunschweig 30

Architecture model structure

process
execution model

• execution path – data dependent
• path execution – arch. dependent
• communication – data & arch. dep.

P1 P2

activation

P1

• resource sharing strategy
• process activation
• component state (caches)

M

IP

M P M P

M

component &
communication
execution model

system
model

• communication pattern
• shared memory access
• environment model

influenced bymodel type

16

MPSOC 2003 R. Ernst, TU Braunschweig 31

Component and communication execution
model

• Resource sharing strategy
– process and communication scheduling
– static execution order
– time driven scheduling

• fixed
• dynamic

– priority driven scheduling
• static priority assignment
• dynamic priority assignment

• timing depends on environment model
– frequency of process activations or communication
– solution for activation transformation proposed in

(Jersak/Ernst DAC 03)

MPSOC 2003 R. Ernst, TU Braunschweig 32

Ex 1: Time driven scheduling

• time division multiple access (TDMA)
– periodic assignment of fixed time slots
– applicable to pe or ce

P1 P2 P3 P4 P1 P2 P3 P4

tpTDMA

P1

P1-P4

P2

P4

P3

12

tP1 tP4

13

tpTDMA

process preempted

TDMA example

12

13

tP2

10

tP3

5

10

5

17

MPSOC 2003 R. Ernst, TU Braunschweig 33

TDMA

• predictable and independent performance down scaling
allows to merge individual solutions

• time slot size adaptable to different service levels

• generates output jitter as a result of execution times

• problems
– utilization
– extended deadlines

piiipepTDMA
Pi

cswiipe
iipeTDMA tpePtt

t
tpePt

pePt mod),(
),(

),(+⋅






 −
=

MPSOC 2003 R. Ernst, TU Braunschweig 34

Ex 2: Static priority with arbitrary
deadlines

• complex execution sequence - may create output bursts

• found in communication scheduling and multiprocessing

busy period

T1

T2

T2

T2 T2

P3

P1

P2

priority analysis solution e.g. by Lehoczky

18

MPSOC 2003 R. Ernst, TU Braunschweig 35

RTOS Overhead
Example: Static priority scheduling (ERCOSEKTM)

tA,resp

tB,resp

RTOS overhead increases response times

MPSOC 2003 R. Ernst, TU Braunschweig 36

RTOS and scheduling effects combined
tA,resp tA,resp tA,resp

tB,resp tB,resp

19

MPSOC 2003 R. Ernst, TU Braunschweig 37

Cache effects

• cache contents replaced by other processes
→ increased execution time
→ must be considered in analysis

• scratch pad memories as alternative

MPSOC 2003 R. Ernst, TU Braunschweig 38

CoPro

System model

VLIW MEMIPIP IPIPMEM

RISC MEM DSP

SYSTEM BUSSYSTEM BUS

static execution
order scheduling

static priority
schedulingFCFS scheduling

earliest deadline
first scheduling

TDMA scheduling

proprietary
(abstract info)

20

MPSOC 2003 R. Ernst, TU Braunschweig 39

Component coupling

• independently scheduled subsystems are coupled by data
flow

⇒ subsystems coupled by stream of events

⇒ coupling corresponds to event propagation

SB 1

scheduling
SB 1

P2

P1

SB 2

scheduling
SB 2

P4

P3

MPSOC 2003 R. Ernst, TU Braunschweig 40

Architecture model structure

process
execution model

• execution path – data dependent
• path execution – arch. dependent
• communication – data & arch. dep.

P1 P2

activation

P1

• resource sharing strategy
• process activation
• component state (caches)

M

IP

M P M P

M

component &
communication
execution model

system
model

• communication pattern
• shared memory access
• environment model

influenced bymodel type

21

MPSOC 2003 R. Ernst, TU Braunschweig 41

System timing analysis with event propagation

• analysis scope extension to several subsystems
– holistic approach, e.g. Tindell and Pop/Eles
– used for automotive software

• event model generalization for a set of scheduling strategies
– arrival and service curves Chakratborty/Thiele
– new analysis approaches needed, e.g. Baruah
– used for network processor design

• event stream model adaptation
– use abstract interface stream properties to couple local analysis
– used e.g. for automotive software

MPSOC 2003 R. Ernst, TU Braunschweig 42

Event stream models

• periodic events

• periodic events with jitter

• events with minimum inter arrival times
– burst events, packets, sporadic events, etc.

tei typically timer released

tptp
te1 te2 te3

pee ttt
ii

=−+1

tp - j/2 tp - j/2
te1 te2 te3

tint

tmin

te1 te2 te3 ten ten+1

minint 1

1

;

;

tttttt

jtttjt

iiini

ii

eeee

peep

≥−≥−

+≤−≤−

++

+

p

peep

tj

jtttjt
ii

<

+≤−≤−
+

;
1

22

MPSOC 2003 R. Ernst, TU Braunschweig 43

Event stream example

system
network

subsystem 1

subsystem 2

MPSOC 2003 R. Ernst, TU Braunschweig 44

Event propagation and analysis principle

environment model

local analysis

derive output event model

transform to expected input event model

until convergence or non-schedulability

23

MPSOC 2003 R. Ernst, TU Braunschweig 45

Example revisited

system
network

subsystem 1

subsystem 2

Distortion

non-functional dependency cycle

MPSOC 2003 R. Ernst, TU Braunschweig 46

Dependency cycle

system
network

resynchronization
reduces jitter

24

MPSOC 2003 R. Ernst, TU Braunschweig 47

Some open issues

• system mode dependent timing
– different load situations and response time requirements
– tagged tokens -> tagged event streams

• (complex) hierarchical prcess and communication
scheduling

• global scheduling optimization

MPSOC 2003 R. Ernst, TU Braunschweig 48

Architecture model summary

• current MPSOC architecture models are primarily used for
simulation

• growing complexity suggests formal methods for
optimization and analysis

• emerging formal approaches supported by multi-level
architecture modeling

• abstract event flow model enables heterogeneous system
analysis

25

MPSOC 2003 R. Ernst, TU Braunschweig 49

Literature

• see: www.spi-project.org

MPSOC 2003 R. Ernst, TU Braunschweig 50

Acknowledgement

• The following persons contributed in developing these
slides

– Bettina Boettger
– Jörn Braam
– Marek Jersak
– Kai Richter

