

MPSOC architectures are heterogeneous

- different processing element types

— processors, weakly programmable coprocessors, IP
components

« different interconnection networks and communication
protocols

- different memory types

» different scheduling and synchronization strategies

© R. Ernst, TU Braunschweig MPSOC 2003 5

Example: Configurable platform

(Nexperia™)

» Nexperia™ DVP hardware architecture (source: Th. Claasen, Philips,

TriMedia™

DAC 2000)

General Purpose
RISC Processor
* 50 to 300+ MHz
T™-
.32-bitor64-bit (I EEREEL: B B > core n

TriMedia cpuU | [VLIW Media
Processor:

* 100 to 300+ MHz
* 32-bit or 64-bit

Library of " DEVICE I/P BLOCK
Device Blocks .
»»»»»»»»» > Nexperia

- Image DEVICE I/P BLOCK Sior B
coprocessors

.DSP * Pl bus

) UAR?I' * Memory bus

<1394 [elaslabesegdd N N PR | 32-128 bit

- USB

*...and more

© R. Ernst, TU Braunschweig MPSOC 2003 6

Nexperia example: Viper Setop Box

External SDRAM

Memory controller|

TriMedia

Interrupt controlle
| Enhanced JTAG :

MIPS bridge
[

Pl bus

o
[oos |2

Adv. image
| IC debug l—_ High-performance — composition
CPU debug
Universal serial bus A == = processor
| PCc]
Universal async. Momor-based
receiver/transmitter IEEE 1394 _— Yy L

MIPS C-Bridge

(TM32)

U cee CPU

23 §E3 B @
Fast C-Bridge C-Bridge B E

MPEG-2

video decoder

(UART)

link layer controller

| ISO UART l—

| Reset I

scaler

| | Interrupt ctrl.

Audio /O

Sony Philips
Digital I/0

|_|Transport stream
DMA

|_|General-purpose
/0

Synchronous
serial interface

CRC MPEG
DMA — system proc. ||
C-bridge

© R. Ernst, TU Braunschweig MPSOC 2003 7
VIPER chip layout - reuse and integrate
> Video ™ £ IcP1
“lmBs +viP1 +vip2)|[§
caB| wmPEG (MBS +VIPT +VIP2) ;%‘ |c:’2 clk_mem
74 "™ A
| clks ¥
1394 l
T-PI C-access
&1 (MSP1 + MSP2)
clk_mem
clk_tpi
MSP3 i
clk_tpi_utm_3218]
olk_mips - clk_mem_utm_3218
- clk_fpi
PR3940 e2
clk_mpi
M-PI
+ VIPER Hardmacros (supplied) [
* VIPER adaptable softmacros ,,Chiplets* L]
© R. Ernst, TU Braunschweig MPSOC 2003 8

Managing HW architecture complexity

development of application programmer interfaces (API) to

hide complexity from application programmer and improve
portability

specialized RTOS to control resource sharing and
interfaces

= complex multi-level HW/SW architecture

© R. Ernst, TU Braunschweig MPSOC 2003

Software architecture example

pe4

mem

application

| application
————ﬁ———-APl
rlvate L]

shared

software

p rivate

i | private =+ architecture

hardware

periphery

Chip Bus
ce,
layered software architecture with HW dependent SW and API
= MPSOC SW is heterogeneous

© R. Ernst, TU Braunschweig MPSOC 2003 10

Application & Architecture

subsystem 2

Application: subsystem 1 Simulink
»Function“ ﬂ &:—r
subsystem 3
o 5
O o application | «~
development language 2

application layer .
application
implementation language

. warticulation point“
architecture layer Il
implementation]

Target HW/SW
architecture

application

RTOS-APIs
RTOS
drivers

o mt Bus

© R. Ernst, TU Braunschweig MPSOC 2003 11

Implementation Language Semantics

system of (communicating) processes

»sreceive (a);“

shared @
memory

»send (a);*

message passing

shared variable

communication communication
C, C++, Java, (SystemC) VHDL, SystemC, SpecC
© R. Ernst, TU Braunschweig MPSOC 2003

12

Function Design — Implementation
Lanquage
-J -J
system level SDL, Simulink, Lustre,
language l

.) manual implementation JCIIEEEE
implementation / code generation Real-Time Workshop
language « Tau

l ‘ »receive (a);*

! DT /
shared
memory @ »send (a);*

© R. Ernst, TU Braunschweig MPSOC 2003 13

,Lossy*“ function translation

« information lost in transformation

— state dependent process behavior
* hidden in processes
— process coordination
» expresses dependency and activation rules
» important for efficient HW/SW architecture implementation

* example: data flow semantics —» RTOS process activation

© R. Ernst, TU Braunschweig MPSOC 2003 14

= need transformation

Implementation Language — HW/SW

Architecture

C, System(, ...

shared ‘

application
SwW
system

e

libraries
(drivers etc.) processes

‘_. HW resources

© R. Ernst, TU Braunschweig MPSOC 2003 17

Resource sharing

 HW/SW resources are shared
— several SW processes mapped to one processing element
= task scheduling

— mapping several communications mapped to one
communication path

= communication (bus) scheduling

— several process data mapped to one memory
= memory assignment (space & time)

© R. Ernst, TU Braunschweig MPSOC 2003 18

10

11

Complex non-fuctional interdependencies

» resource sharing introduces complex non-functional
interdependencies (,,cross talk*)

Application B

Application A

© R. Ernst, TU Braunschweig MPSOC 2003 23

Interdependency example

 anomalies: best case can become worst case

min execution time max execution time
= high bus load = low bus load

tbc1

tuct
AA-E) -] SEEEE

oep

\

- ——— -

[1
[1
[1
| A A /

- ———

I
]
]
]
\
B

© R. Ernst, TU Braunschweig MPSOC 2003 24

12

Modeling Challenges - cont‘d

+ complex design objectives and constraints

3 : Release

Reaction time of airbag after crash ?

t¢:rash + tsens + tcsens + tdetc + tfbus + tctrl + tcact + t:=1ct + tairbag

physical delay tcom tAPI tdrv tAPI tdrv physical delay
> telrv > tproc:ess v tcom > tproc:ess > tcom
+ tap) *tyry + tap)
© R. Ernst, TU Braunschweig MPSOC 2003 25

MPSoC modeling - goals

e current goal: Target architecture co-simulation
e supports system-level validation
¢ uses library of component and communication models
e requires executable code and software platform
o extensive simulation required for complex MPSoC or
distributed systems
¢ research goal: support formal methods for design space
exploration, system-level optimization and analysis
o different modeling approach required

© R. Ernst, TU Braunschweig MPSOC 2003 26

Architecture model structure

n model type influenced by

* communication pattern
» shared memory access
environment model

system
model

activationt

 resource sharing strategy
* process activation
» component state (caches)

component &
communication
execution model

process « execution path — data dependent
execution model « path execution — arch. dependent
* communication — data & arch. dep.
© R. Ernst, TU Braunschweig MPSOC 2003 27

Process execution model

« timing and communication
depend on
— execution path
— architecture send(.);
— communication receive (...);
mechanism and volume

({b1, ..., bn} basic blocks)

© R. Ernst, TU Braunschweig MPSOC 2003 28

Process timing and communication

» process timing and communication can be evaluated by

— simulation/performance monitoring
« trigger points at process beginning and end
+ stimuli required, e.g. from component design
» data dependent execution — upper and lower timing bounds

— simulation challenges
» coverage?

» cache and context switch overhead due to run-time scheduling
with process preemptions

* influence of run-time scheduling depending on external event
timing
— formal analysis of individual process timing
» serious progress in recent years

— discussion see book chapter and literature

© R. Ernst, TU Braunschweig MPSOC 2003 29

Architecture model structure

n model type influenced by

* communication pattern
» shared memory access
» environment model

system
model

r_____________________l
| activationt
component & * resource sharing strategy |
. . » process activation
| @ﬁe ec:er::’:iir:cr:ggg » component state (caches) :

5

process « execution path — data dependent
execution model » path execution — arch. dependent

+ communication — data & arch. dep.

© R. Ernst, TU Braunschweig MPSOC 2003 30

15

Component and communication execution
model

* Resource sharing strategy
— process and communication scheduling

— static execution order
— time driven scheduling
* fixed
» dynamic
— priority driven scheduling
+ static priority assignment
» dynamic priority assignment

» timing depends on environment model

— frequency of process activations or communication

— solution for activation transformation proposed in
(Jersak/Ernst DAC 03)

© R. Ernst, TU Braunschweig MPSOC 2003 3i

Ex 1: Time driven scheduling

+ time division multiple access (TDMA)
— periodic assignment of fixed time slots

— applicable to pe or ce

process preempted

P,P,
‘

1
1
Py ¢+ [
1
Py I
L ‘ L P
1 1 P 1
1 tor "oy oy tP4| P2 P{i P4 !
tpTDMA
TDMA example
© R. Ernst, TU Braunschweig MPSOC 2003 32

16

17

RTOS Overhead

Example: Static priority scheduling (ERCOSEK™)

tA,resp
1 1 | 1 vl | 1 1
G -
ph start \ &
ph stap ’ \
L act : : \

& term

B act

bl

E term

tB,resp

RTOS overhead increases response times

© R. Ernst, TU Braunschweig MPSOC 2003 35!

RTOS and scheduling effects combined

tA,resp — tA, resp

R | | l f . '

ph start | I " I | "I

rh stop I | | | | |

4 act ﬂ ﬂ ﬂ

al i | o || I 1 N
4 term |_| |_| |_|

E act ﬂ ﬂ

b1 . | i H

E term |_| |_|

C act |-| ﬂ

e
el .. o

C term ﬂ ‘ l-l

© R. Ernst, TU Braunschweig MPSOC 2003 36

Cache effects

» cache contents replaced by other processes
— increased execution time

— must be considered in analysis

» scratch pad memories as alternative

© R. Ernst, TU Braunschweig MPSOC 2003 37

System model

static priority
FCFS scheduling scheduling a

0 /:
X RIS MEM DSF
TDMA scheduling |- SYSTEM B
static execution
2 [—MEMj—{l|= M| order scheduling
proprietary earliest deadline
(abstract info) wrsocaoe] Tirst scheduling |~

19

Component coupling

* independently scheduled subsystems are coupled by data

flow
SB 1 SB 2
& Il ®
AN NN
(o) (o)
(Py) 1l (Py)
scheduling scheduling
SB 1 SB 2
= subsystems coupled by stream of events
= coupling corresponds to event propagation
© R. Ernst, TU Braunschweig MPSOC 2003 39

Architecture model structure

n model type influenced by

system * communication pattern
model » shared memory access
» environment model

)
|
!
!
l
B e T T i i

activationt

 resource sharing strategy
* process activation
» component state (caches)

component &
communication
execution model

process « execution path — data dependent
execution model » path execution — arch. dependent

+ communication — data & arch. dep.

© R. Ernst, TU Braunschweig MPSOC 2003 40

20

System timing analysis with event propagation

* analysis scope extension to several subsystems
— holistic approach, e.g. Tindell and Pop/Eles
— used for automotive software

» event model generalization for a set of scheduling strategies
— arrival and service curves Chakratborty/Thiele
— new analysis approaches needed, e.g. Baruah
— used for network processor design

» event stream model adaptation

— use abstract interface stream properties to couple local analysis
— used e.g. for automotive software

© R. Ernst, TU Braunschweig MPSOC 2003 41

Event stream models

» periodic events

T " te, 41— le, =1p

t.; typically timer released

» periodic events with jitter
te1 te2 te3 tp =] = l‘ei+l _tei 5 tp + J >
Ptz == t-jia | eeee ,
J<i,

¢ events with minimum inter arrival times

— burst events, packets, sporadic events, etc.

te1 iez ies ie" ons tp _j < te,-ﬂ _tei = tp +j ;

[> >
— t | tei+n B tei _ tint ? tei+1 - tei — tmin
int
© R. Ernst, TU Braunschweig MPSOC 2003 42

21

Event stream example

subsystem 2

sporadic

wi jitter i periodic

i w/ jitter

sporadic
wI burst

:t

system \ j
@ \

= periodic E

perlodlc*
SUbsyStem Qwi jitter E 3

-h-
d -
riodic =
B -

© R. Ernst, TU Braunschweig MPSOC 2003 43

Event propagation and analysis principle

environment model

local analysis

derive output event mode

transform to expected input event mod

until convergence or non-schedulabil*'y

© R. Ernst, TU Braunschweig MPSOC 2003 44

22

Example revisited

AN NN NN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESE "
* subsystem 2 :
sporadic sporadic #= periodic 1

wl jitter w/ burst 3

- :

. periodic E
e periodic subsystem 1 ijitteri .
: Mg M J;
L E s s NSNS NN NN R RN AN NN RANANNENEANANAENEEEEEEENEEEEEEEEEEEEEEEnal

© R. Ernst, TU Braunschweig MPSOC 2003 45

Dependency cycle

-

-
simple

periodic

activation Q

1
]
1Sens ’

-
sporadic &

1
1
I
: wi jitter
1
1
1

interference

network

© R. Ernst, TU Braunschweig MPSOC 2003 46

23

24

25

