
1

SoC Architectures for
Hardware Designers

Trevor Mudge
Bredt Professor of Engineering

The University of Michigan, Ann Arbor
http://www.eecs.umich.edu/~tnm

3rd International Seminar on
Application-Specific Multi-Processor SoC

7 - 11 July 2003, Hotel Alpina, Chamonix, France

Outline of Tutorial

• Technology opportunities and limits
• What is a System-on-a-Chip – SoC

Silicon is the Engine: Andy Grove’s Address at Dec. 2002
IEEE International Electron Devices Meeting

source: Intel

Where is technology heading?

source: Intel

2

Where is technology heading?

source: Intel

Flavors of Integrated Circuits

• Digital – signals are quantized to 2 levels
– permits “infinite” precision
– microprocessors etc.

• DRAM – dynamic random access memory
– variant of above specialized for high density

• Analog – value of voltage models quantity exactly
– low precision
– only use when digital is not feasible
– radio receivers and transmitters

• Difficult to mix any two in one die

Limits

• Moore’s Law

• Power
• Mask Cost

• Complexity
• Return on Investment

Limits: Moore’s Law
• Moore’s Law

– the number of transistors on a given chip can be doubled every two years
– principle of progress in electronics and computing since Moore first

formulated the famous dictum in 1965
– for the same amount of time, people have predicted it would hit a wall.

• Future Generations of Si Technology

– double density = reduce line width by 0.7x

– 130nm 90nm 60nm 45nm 30nm

– 2 or 3 years between generations

– ~10 ± 2 Years

– after 2015 – paradigm shift to a non-Si technology

– be careful about betting on that

• Moore’s law no limits for next 10 years

3

Limits: Power

• It’s not just transistor density that has
grown exponentially ….

Power: The Current Battleground

source: Intel

Total Power of CPUs in PCs

I992 – 90M CPUs @ 1.8W = 180MW

today – 500M CPUs @ 18W = 10,000MW

Four Hoover dams

Low power has other implications …

• Low power has been the technology that defines
mainstream computing technology
– Vacuum tubes → silicon
– TTL → CMOS
– microprocessors

• 1950’s “supercomputers” created the technology
• 1980’s supercomputer are the beneficiaries of

microprocessor technology

4

What hasn’t followed Moore’s Law

• Batteries have only

improved their power

capacity by about
5% every two years

Limits: Mask Cost

0

1000

2000

3000

4000

5000

6000

7000

8000

2002 2003 2004 2005 2006

N65

N90

0.13um

0.15um

0.18um

0.25um

0.35um

0.5um+

0

1000

2000

3000

4000

5000

6000

7000

8000

2002 2003 2004 2005 2006

N65

N90

0.13um

0.15um

0.18um

0.25um

0.35um

0.5um+

• Today greatest volume in 0.25, followed by 0.18 and 0.15
• Next year perhaps 0.13 processes
• Older processes do not just disappear…

Installed and expected fab capacity from
 a leading

sem
iconductor m

anufacturer

Unit: K pcs, 8" Equivalent Wafer

Limits: Mask Cost

• Closer to leading edge higher cost
masks

• Volume is necessary
– often means more programmable to achieve

volume

• If application specific ness limits volume
older process

Limits: Complexity
• Problems include

– design time and effort
– validation and test

• Hardware
– SoC of previously defined parts

• Software
– bigger challenge
– 10x hardware costs
– why run-time reconfigurable hardware may

not be a good idea

5

Limits: Return on Investment

• Return on investment of fabs
– Mid 60’s < $1M
– Mid 70’s $3M
– Early 90’s $1B
– ’02 $3B
– 2010 $??B

• Different business models
– separate design and fab

Fabless IP Providers

• Business model is based
upon the development
and sale and/or licensing
of pre-defined, fully-
characterized,
semiconductor functional
cores

• In 2002, increased by
8.4% from 2001's $698.4
million

• Forecast to reach
$1,503.3 million by end
2007

What is An SOC?

• Its that part of a platform that can be
cost-effectively integrated onto one
chip

• Why not the whole thing?

• Because: Analog and DRAM

What is A Platform?

• A programmable collection of digital
components targeted to a class of
applications

• Platforms are usually complete
enough to load and boot an OS

6

How Does a Platform Get Defined?
• Someone has an idea, sells it to a large tier-one OEM
• If the OEM thinks it's a good idea they ask their platform

providers (i.e., ST and TI) to include that functionality in
their platforms

• That someone with an idea of course could be: ARM
with Jazelle, Nokia (i.e. an OEM), or ST with a
coprocessor idea

• Typically the tier-one OEM limits ST or TI from selling
the platform to anyone else in the same form

• The resulting ASSP (application specific standard part)
that gets defined is slightly modified

• Another view:
– tier-one OEMs get all the bits they really want in a platform
– tier-two OEMs are usually satisfied with something that almost does that

job and is cheap

Four Examples

• Texas Instruments OMAP 1510
• STM Nomadik

• Intel PXA800F
• PDA/Communicator – University of

Michigan
• Common features

TI: OMAP TI: Nomadik

7

Intel: PXA800F PXA800F

PDA/Communicator

SA-1110
Integer
Pipeline

I-cache

D-cache

IMMU

DMMU

RAM

Flash
RTC

PIC

DMA

SER0

console

PCMCIA

= implemented

= in development

GPIOI/O Mgr

S
pa

ce
 M

an
ag

er

Platform
Config

FPA

C6200
DSP

I-cache

D-cache

iPAQ - like

Commonality:
Heterogeneous Multiprocessors

• Control processor
• “Data plane” processor

• Analogous to the control and data of a
program – not a pure separation either

• Data plane digital signal processor
• Other components are usually small but

essential ingredients if OS is to be booted
or to interface to the external world

8

Major Components

• Interconnect
– current architectural paradigm uses buses
– AMBA

• Control processors
– standard general purpose processors
– 1-2 generations behind state-of-the-art

architecture

• Data plane processors
– standard DSPs

Why Standard Part Processors

• Software (10x hardware)
• Tool chain – more software

Interconnect: Buses
• What is a bus?
• A definition of a set of signals for broadcasting signals
• Strengths

– inexpensive support for many-to-many connections provided they don’t
overlap in time

– multidrop
• Weakness

– bandwidth limitation
– high drive needs

• Future alternatives
– point-to-point communication

• essential for streaming data
• Network on a chip

– leverage existing communications technology
– need to simplify

Open Standard Bus: AMBA
• Advanced Microprocessor Bus Architecture

• On-chip bus proposed by ARM

• Very simple protocol
• High bandwidth bus

– AHB – Advanced High-performance Bus
– AXI protocol

• Low bandwidth bus
– APB – Advanced Peripheral Bus

• Next generation high performance bus

9

On-Chip Bus (OCB)

• Interconnect components inside a single chip

AMBA AHB Features

• Burst transfers
• Split Transactions
• Single cycle bus master handover
• Single clock edge operation

• Non-tristate implementation
• Wide data bus configurations supported

– 64/128 bits

AMBA APB Features
• Low power
• Latched address and control
• Simple interface
• Suitable for many peripherals
• No wait state allowed
• No burst transfers
• No arbitration (bridge the only master)
• No pipelined transfer
• No response signal

AMBA AXI Features

• Separate Address / Control and data phases
• Supports Unaligned data transfers

• Burst-based Transactions

• Separate read / write channels for DMA
• Ability to issue Multiple outstanding Addresses

• Out-of-order Transaction Completion

• Easy Addition of Register Stages

10

Processors

• Control-type
– parallelism

– ARM processors
– Initially thought of as a low power solution

• Data plane
– Texas Instruments TMS32C6200

– Early DSP vendor – libraries & solutions

Architectural Approaches to Parallelism

• Process level parallelism
– Homogeneous

• Tessellations of processors
• MMP
• SMPs

– Heterogeneous
• SOC
• Control processor and application specific

processors

Architectural Approaches to Parallelism

• Instruction level parallelism
– Pipelining and multiple instruction issue

• Superscalar processors
– Hardware detects dependencies

– Responsible for scheduling instructions

• VLIW processors
– No hardware overhead

– Parallelism detected in software

Pros and Cons

• Superscalar
– Pros: run-time parallelism detected

– Cons: complex and consumes area and
energy

• VLIW
– Pros: simple hardware

– Cons: software is much more complex

11

Where do they fit in an SOC

• Control Plane
– Superscalar – just

– Dominated by run-time conditional branches

• VLIW
– Digital signal processing
– Data parallel applications

ARM Architecture Comparison

350Mhz - >1GHzUp to 250MhzUp to 150MhzPerformance Range

Synthesizable and

Hard Macro

SynthesizableSynthesizableTarget Implementation

YesNoNoOut of Order completion

ALU/MAC, LSUNoneNoneConcurrency

Scalar, in-orderScalar, in-orderScalar, in-orderInstruction Issue

YesNoNoIndependent
Load-Store Unit

DynamicNoNoBranch Prediction

YesNoNoMIA Instructions

YesNoNoV6 SIMD Instructions

Yes(ARM926EJ)NoneJava Decode

853Pipeline Length

ARMv6ARMv5TE(J)ARMv4Architecture

ARM11ARM9EARM7Feature

ARM Version 4

Fetch Decode Execute

ARM Version 5

Fetch Decode Execute Memory
Write-
Back

Forwarding paths

12

ARM Version 6

PF1 PF2 DE ISS SH ALU SAT

WBMAC1 MAC2 MAC3

LS add DC1 DC2

Fetch Execute

Data Hazards

add r1 ,r2,r3

sub r4, r1 ,r3

and r1, r6 ,r7

xor r1, r10 ,r11

load r1, [r10]

or r8, r1 ,r9

RAW

WAR

WAW

Data Hazards (cont.)

ANDS R0,R2,R3

MOVCC R0,R4

STR R1,[R9],#4

SMULL R7,R9,R4,R4

LDR R7,[R9],#-4

ADD R2,R1,R4,LSL #8

RAW

WAR

WAW

Data Plane Processors

• History
• Register file feeding multiply accumulate

unit(s) – MACs
• MAC is the “basic” unit of an inner product

• inner (dot) product = ∑ a[i] × b[i]
• sum = sum + a[i] × b[i]
• move to VLIW from less high level

language friendly architectures

13

Texas Instruments TMS320C6200
Main Architectural Features

• VLIW
– Up to 8, 32-bit instructions per cycle
– RISC-like ISA

• 2 - Cluster Architecture
• Per cluster:

– 16 General Purpose Registers
– 4 Fully-Pipelined Functional Units
– One crosspath to other cluster

• Predicated execution
• Multi-cycle latency instructions

Execution Core

The Pipeline

Pipeline Execution of Instruction Types

14

Functional Units

• L-Unit
– 32/40-bit Arithmetic
– 32-bit Logical Operations
– 32/40-bit Compare Operations
– Leftmost 1 or 0 counting for 32-bit
– Normalization count for 32 and 40-bit

• D-Unit
– 32-bit Add and Subtract (linear and circular

addressing)
– Loads and Stores with 5-bit constant offset
– Loads and Stores with 15-bit constant offset (.D2 unit

only)

Functional Units

• S-Unit
– 32-bit Arithmetic
– 32-bit Logical Operations
– 32/40-bit Shifts
– 32-bit Bit-field Operations
– Branches
– Constant Generation
– Control Register Access (.S2 unit only)

• M-Unit
– 16x16 Multiply

Non Software Pipelined Loop
c code:

for (i = 0; i < L_WINDOW; i++) {

y[i] = mult_r (x[i], wind[i]);
move16 ();

}

• Cannot software pipeline loop
• Very little parallelism in assembly
• Does make use of auto increment load

instructions
• MVK instructions setup return, no

branch and link, plenty of delay slots to
do this manually

• Notice the NOP 4 at the end of the
loop, common for non software
pipelined

• No overlap of caller and callee
functions

assembly:

L1:

LDH .D2T2 *B10++,B4
|| LDH .D1T1 *A13++,A0

MVKL .S2 RL0,B3
MVKH .S2 RL0,B3
NOP 1
B .S1 _move16
SMPY .M1X B4,A0,A0
NOP 1
SADD .L1 A0,A15,A0
SHRU .S1 A0,16,A0
STH .D1T1 A0,*A14++

RL0: ; CALL OCCURS
SUB .D1 A11,1,A1

[A1] B .S1 L1
SUB .D1 A11,1,A11
NOP 4
; BRANCH OCCURS

Function Unit Usage (non software
pipelined loop)

S2M2L2D2S1M1L1D1

15

Software Pipelined Loop
c code:

for (j = 0; j < L_WINDOW - i; j++)
{

// L_mac is an intrinsic for the saturated multiply and accumulate
sum = L_mac (sum, y[j], y[j + i]);

}

• Iteration interval is 1
• 8 iterations in ||
• Needs a large prologue because iteration interval is less than the number of branch

delay slots (notice there are 5 branches before the kernel to setup one branch
resolving each cycle)

• Able to use A4 and B5 for each iteration because of load delay slots
• Out of order processor achieves pipelining by renaming and branch prediction
• Able to get lots of ||
• Uses predicates to stop loop and squash epilogue

Assembly :

L11: ; PIPED LOOP PROLOG

LDH .D1T1 *A0++,A4
|| LDH .D2T2 *B4++,B5

LDH .D1T1 *A0++,A4
|| LDH .D2T2 *B4++,B5
|| B .S2 L12

LDH .D1T1 *A0++,A4
|| LDH .D2T2 *B4++,B5
|| B .S2 L12

SUB .S1X B0,7,A1
|| LDH .D1T1 *A0++,A4
|| LDH .D2T2 *B4++,B5
|| B .S2 L12

B .S2 L12
|| LDH .D1T1 *A0++,A4
|| LDH .D2T2 *B4++,B5
|| SMPY .M1X B5,A4,A5

SUB .L2 B0,6,B0
|| SMPY .M1X B5,A4,A5
|| LDH .D1T1 *A0++,A4
|| LDH .D2T2 *B4++,B5
|| B .S2 L12

L12: ; PIPED LOOP KERNEL

[A1] SUB .S1 A1,1,A1
|| SADD .L1 A3,A5,A3
|| SMPY .M1X B5,A4,A5
|| [B0] B .S2 L12
|| [B0] SUB .L2 B0,1,B0
|| [A1] LDH .D1T1 *A0++,A4
|| [A1] LDH .D2T2 *B4++,B5

;** ---------------------------------*
L13: ; PIPED LOOP EPILOG
;** ---------------------------------*

NOP 3

Function Unit Usage (software
pipelined loop)

S2M2L2D2S1M1L1D1

Compiler Issues 1
• Compiler doesn’t generate || code for function

epilogue
• Doesn’t overlap code completely with branch delay

slots

LDW .D2T2 *+SP(508),B3
LDW .D2T1 *+SP(528),A15
LDW .D2T2 *+SP(524),B13
LDW .D2T2 *+SP(520),B12
LDW .D2T2 *+SP(516),B11
LDW .D2T2 *+SP(512),B10
LDW .D2T1 *+SP(496),A12
LDW .D2T1 *+SP(492),A11
LDW .D2T1 *+SP(488),A10
B .S2 B3

|| LDW .D2T1 *+SP(500),A13
LDW .D2T1 *+SP(504),A14
ADDK .S2 528,SP
NOP 3
; BRANCH OCCURS

.endfunc

16

Compiler Issues 2
• Compiler doesn’t overlap the load

delay slots and the branch delay
slots

• VLIW much more difficult for a
compiler

• Compilers are already very
complex and hard to create/debug
entities

• Very difficult to fill 5 branch delay
slots unless software pipelining a
loop

LDW .D2T1 *+SP(180),A0
NOP 4
STW .D2T1 A0,*+SP(220)
B .S1 _move16
MVKL .S2 RL312,B3
MVKH .S2 RL312,B3
NOP 3

; Change it to this

LDW .D2T1 *+SP(180),A0
B .S1 _move16
MVKL .S2 RL312,B3
MVKH .S2 RL312,B3
NOP 1
STW .D2T1 A0,*+SP(220)
NOP 1

Control vs. Data Plane

• Merge?
– lower cost systems?

– lower power systems?

• Complicates real-time deadlines
• Add a MAC unit to a general purpose

processor – ARM’s Piccolo
• Low end solution

A Challenge for the Near Future:
Wireless Supercomputing

High
Density
Storage
(1 Gbyte)

Energy Supply (1475 mA-hr @ 4oz)

CPU
(10k SPECInt,

20% duty-cycle)

Soft-radio 4x
Crypto-processing 4x
Augmented reality 4x
Speech recognition 2x
Mobile Applications 2x

Workload Performance Req’ed
(relative to fastest current design)

High
Density
Storage
(1 Gbyte)

Energy Supply (1475 mA-hr @ 4oz)

CPU
(10k SPECInt,

20% duty-cycle)

Soft-radio 4x
Crypto-processing 4x
Augmented reality 4x
Speech recognition 2x
Mobile Applications 2x

Workload Performance Req’ed
(relative to fastest current design)

• All with v tiny batteries
• Ambient power

Advanced Topics

•JAVA accelerators
•Secure Cores

17

JAVA Accelerators

ARMxxxEJ Processor

Jazelle Support Code

Jazelle Hardware

Native OS

Network Graphics Remote
Methods

Verifier Garbage
Collector

Process
Manager

Class
Loader

Memory
Manager

Native
Methods

Java Application

Native
Application

Standard Java Environment: KVM, CVM ...

• Jazelle Hardware and Software

ARM v5 Jazelle Mode Pipeline

Fetch
Decode2
Register

Read
Execute Memory

Write-
Back

Decode1
Java
Stack

Management

Java bytecode operands,

register decoded

ARMv5 Jazelle

• Fetches Bytecode from I-Cache
– D-Cache fetch for JVM execution

• Variable length Instruction Fetch
– Length for each Bytecode variable

• Internal Translation Buffer store translated
native code
– Bytecodes tend to expand in translation

• Branch back to Normal Mode for VM
execution

Jazelle Translation Example
dup LDR t0, [SP,#4]

STR [SP], t0

SUB SP,SP,#4

iload_1 MOV t0,#1

LDR t1, [LP,t0,LSL #2]

STR [SP], t1

SUB SP,SP,#4

18

Secure Cores

• Off-chip information un-trusted
– OS, External I/O also un-trusted

– On chip components only trusted

• Security must be application or thread
based
– Security should be managed per application
– Inter-application communication should also

be secure

System Architecture

Crypto Core

B
uffer &

 L1 Interface

B
uffer &

 L2 Interface

Key
Manager

Management Unit

Data

Control

Data

Control

L1Cache Miss

Control

CRC / SHA

Checker

Error

DataData

Data

Control

Control

L2Cache Read

L1 C
ache &

 C
P

U

L2 C
ache &

 P
eripheral

Control & Data

Data Data

Ideal Goal for Hardware Security

• Detection
– Detect tampered applications
– Applications found to be tampered not executed
– SHA, CRC components for detection

• Prevention
– Use proven Encryption / Decryption methods
– AES, RSA

• Low overhead
– Minimal Increase of Latency

Trade-Off for Security

• Detection
– SHA Block expensive to implement
– No Detection results in system crash
– Detect partial parts of Application

• Prevention
– RSA Block expensive to implement
– Simple crypto cores unreliable
– AES Reasonable

• Reused for network transmissions

– Partial encryption / decryption may also be deployed

19

Trade-Off for Security (cont.)

• Overhead
– Crypto Cores add large overhead

• Ex) Typical AES units take 10 cycles to complete

– Prefetch / Speculation should be explored

– Private / Public Keys are added for
speculation parameters

Other Issues

• Key management
– Key revocation

– Acquiring a Key, Currently assuming TCPA
key obtaining method

• Memory Management Unit
– Sticky business

• DLLs, malloc issues
• Adding and deleting secure and unsecure pages

