Networks on Chip

Giovanni De Micheli

CSL - Stanford University

MPSOC -03

Outline

- Introduction and motivation
- Physical limitations of on-chip interconnect
- Communication-centric design
- On-chip networks and protocols
- Software aspects of on-chip networks

Electronic systems

Systems on chip are everywhere

 Technology advances enable increasingly more complex designs

Challenge: how to design complex systems efficiently?

De Micheli

MPSOC -03

Component-based design

- SoCs are designed (re)-using large macrocells
 - E.g., processors, controllers, memories, ...
 - Goal: plug and play methodology
- Design objectives:
 - Provide a functionally-correct, reliable operation of the interconnected components
 - Achieve high quality of service (QoS)
 - Contain energy consumption

Challenge: how to connect the components effectively?

SoC trends

- Computation

 More, faster blocks
- Storage
 - Most chip area
 - Heavy, unpredictable data traffic
- Communication

 Speed, energy are critical

SoCs are interconnect dominated

Outline

- Introduction and motivation
- Physical limitations of on-chip interconnect
- Communication-centric design
- On-chip networks and protocols
- Software aspects of on-chip networks

Qualitative roadmap trends

- Continued gate downscaling
- Increased transistor density and frequency

 Power and thermal management
- Lower supply voltage
 Reduced noise immunity
- Increased spread of physical parameters

 Inaccurate modeling of physical behavior

Silicon technology roadmap

Year	Gate length (<i>nm</i>)	Transistor density (<i>million/cm</i> ²)	Clock rate (<i>GHz</i>)	Supply voltage (<i>V</i>)
2002	75	48	2.3	1.1
2007	35	154	6.7	0.7
2013	13	617	19.3	0.5

Propagation delays (Example)

- Light speed in vacuum 300 micron/psec
- Chip diagonal
 - 30 mm (edge 22mm)
 - 100 psec
 - 1 clock cycle @ 10GHz
 - 5-10 clock cycles with realistic assumptions
- Wire pipelining
- Delay variation and delay control

Physical design

- Limitations come from interconnect physics

 Delay on global wires and delay uncertainty
 Crosstalk due to capacitive coupling among wires
- Electric signalling techniques

 Trade-off noise immunity vs. energy vs. speed
 Sense small swings -> low energy and fast transitions
- Synchronization across large chips
 - Is synchronization possible at high clock rates?
 - What is the probability of synchronization failure?

Reliability of information

- Information transfer is inherently unreliable at the electrical level, due to:
 - Timing errors
 - Cross-talk
 - Electro-magnetic interference (EMI)
 - Soft errors
- The problem will get increasingly more acute as technology scales down

Soft errors

- Due to charge injection:
 Charged ion:
 - Alpha particle

- Neutron scattering (from cosmic rays)
- Soft error rate increase with:
 - Environment (e.g., altitude, latitude)
 - Decrease of node critical charge (capacitance*voltage)
- Used to be a problem for DRAMs

 Now important also for SRAM, registers, etc.

Noise and transient malfunctions

- SoC will operate in presence of noise

 Data may be delayed or corrupted
 Malfunctions modeled as single/multiple upsets
- Present design methods reduce noise
 Physical design (e.g., sizing, routing)
- Future methods must tolerate noise

 Push solution to higher abstraction levels

Outline

- Introduction and motivation
- Physical limitations of on-chip interconnect
- Communication-centric design
- On-chip networks and protocols
- Software aspects of on-chip networks

Systems on chips: a communication-centric view

- Design component interconnection under:

 Uncertain knowledge of physical medium
 Incomplete knowledge of data traffic
- Design interconnection as a micro-network

 Leverage network design technology
 - Manage information flow
 - To provide for performance
 - Power-manage components based on activity
 - To reduce energy consumption

Network Architectures and control

Software

application system

Architecture and control

> transport network data link

Architectures

 Shared medium
 Direct/indirect
 Hybrid

Control protocols
– Layered
– Architecture dependent
– Implemented in Hw or Sw

Physical wiring

De Micheli

lacksquare

Micro-networks on SoCs

- Multi-processors on a chip
 - Use different network architectures
 - Designed for performance
- Application-specific SoCs
 - Micro-network can be tailored to application
 - Low-energy communication
 - Satisfying Quality of Service (QoS) requirements
 - Performance
 - Reliability
- Field-programmable systems

 Large-scale, new FPGAs

Example RAW architecture

- Fully programmable SoC
 - Homogenous array of tiles
 - Computational processing cores with local storage
 - Each tile has a router
- The raw architecture is exposed to the compiler
 - Cores and routers are programmable
 - Compiler determines which wires are used at each cycle
 - Compiler pipelines long wires
- Direct network over a homogeneous fabric

Example of direct micro-network STM Octagon

The network is scaleable: a node can be a port processor or an interface node to another network

De Micheli

MPSOC -03

Example of indirect micro-network SPIN

Examples FPGAs

- Example 1: Xilinx Spartan II
- Indirect network over homogeneous fabric

 Many simple processing elements
 CLBs interconnected by switches

- Example 2: Xilinx Virtex II
- Indirect network over heterogeneous fabric

 Elements are CLBs, RAMs, multipliers and clock managers interconnected by switches

Network design objectives

- Low communication latency
 Streamlined control protocols
- High communication bandwidth

 To support demanding SW applications
- Low energy consumption

 Wiring switched capacitance dominates
- High system-level reliability

 Correct communication errors, data loss

Guaranteed vs Best-Effort Service

- Guaranteed service
 - QoS of communication is guaranteed
 - Necessary for real-time communication
 - E.g. 4Mb/s for an MPEG video stream
 - Resource utilization may be low
- Best-effort service
 - QoS of communication is not guaranteed
 - Conventional priority-based on-chip buses offer besteffort service
 - Suitable for non-real time communication
 - Communication resources are shared
 - Use idle communication resources
 - Good utilization of communication resource

Outline

- Introduction and motivation
- Physical limitations of on-chip interconnect
- Communication-centric design
- On-chip networks and protocols
- Software aspects of on-chip networks

Physical layer

Software

application system

Architecture and control

> transport network data link

Physical design:
Voltage levels
Driver design
Sizing
Physical routing

Physical wiring

De Micheli

Physical layer design

- Multiple-voltage, dynamic voltage supplies
 Multiple, adjustable threshold voltages
- Bus/wire drivers:
 - Large/small driver swings
 - Receivers with sense-amplifiers
- Device and wire sizing

 Tapered wires
- Physical routing

 Cross-talk avoidance

Reduced swing transmission

- Sensing small swings improves performance

 As in the case of RAMs
- Propagation delay is insensitive to supply voltage
 Small delay reduction for increased supply
- Power dissipation decreases with voltage swing
- Transmission can be single-ended or differential

 Many possible schemes

Single-Ended Static Driver and Receiver

- Transmission-line effects:
 - Considered when rise/fall time of input signal are smaller than the time of flight on the transmission line
 Total wire resistance much less than 5 Z₀
- Design considerations
 - Use matched termination to avoid reflection

Limitations of physical design

- Large scale design:
 1 billion transistors
- Small scale features

 Sub 100 nm geometric features
- Nearly impossible to generate ideal layout

 Too difficult to find hot spots
 Design and timing closure problem

Challenge: make imperfect layout to work by making corrections at higher levels

Architecture and control

Software

application system

Architecture and control

> transport network data link

Physical wiring

De Micheli

Data link layer

- Provide reliable data transfer on an unreliable physical channel
- Access to the communication medium
 Dealing with contention and arbitration
- Issues
 - Fairness and safe communication
 - Achieve high throughput
 - Error resiliency

Data-link protocol example: error-resilient coding

MPSOC -03

- Compare original AMBA bus to extended bus with error detection and correction or retransmission
 - SEC coding
 - SEC-DED coding
 - ED coding
- Explore energy efficiency

De Micheli

Advanced bus techniques: CDMA on bus

- Motivation: many data sources

 Support multiple concurrent write on bus
 Discriminate against background noise
- Spread spectrum of information

 Driver/receiver multiply data by random sequence generated by LFSR
 LFSR signature is key for de-spreading

Going beyond buses

Buses:

- Pro: simple, existing standards
- Contra: performance, energy-efficiency, arbitration
- Other network topologies:
 Pro: higher performance, experience with MP
 Contra: physical routing, need for network and transport layers

Challenge: exploit appropriate network architecture and corresponding protocols

Network layer

- Network switching
 - Connection-oriented switching
 - A path from source to destination is reserved prior to communication
 - Useful for traffic with infrequent and long messages
 - Circuit switching, virtual circuits
 - Connection-less switching
 - The communication path is determined dynamically
 - Datagram
- Network routing
 - Unicast, multicast
 - Source routing, distributed routing
 - Deterministic, adaptive

Challenge: which models and what parameter values are effective for micro-networks?

De Micheli

MPSOC -03

De Micheli

Connection-oriented schemes

- Communication path is fixed before data transmission starts
- Network types: circuit switch, virtual circuit
 - Basic operations
 - Connection setup
 - Data transfer
 - Connection teardown
- Advantages

- Suited to real-time, constant BW communication
- Disadvantages
 - Resource utilization is worse than connection-less communication (i.e. datagram).
 - Connection setup overhead

Connection-less communication

 Depending on network traffic, the communication path is determined dynamically during data (packet) transmission

- Network type: datagram
- Advantages
 - Better adaptation of communication to the varying network traffic
 - Better utilization of network resource
 - Suited to variable bit rate communication
 - (e.g. encoded voice, MPEG2,4, etc.)
- Disadvantage
 - Poor QoS support (← no resource reservation)

Time

Packet-based communication Virtual circuit

 Fixed end-to-end communication path – Packets are transferred over the VC

QoS guarantee:

 Through resource reservation when the connection is set up

Packet-based communication datagram

- Connection-less
- Routers route packets independently.
 Packets can take any paths to the destination.

 Routers manage routing tables to find paths to any destinations

- Non-deterministic communication delay due to communication resource (buffer and link) contention
- No QoS guarantee!
- Flow and congestion control is needed De Micheli MPSOC -03

De Micheli

41

Packet Forwarding Schemes

Wormhole

(1) After A receives a flit of the packet, A asks B if B is ready to receive a flit

- (2) $B \rightarrow A$, ack
- (3) A sends a flit to B.

Pipelining on a flit (flow control unit basis

> flit size < packet size Smaller data space is needed than store-and-forward

Example SPIN Micro-network

- 36-bit packets

 header: destination
 trailer: checksum
- Fat-tree network architecture
- Wormhole switching
- Credit-based control flow

EOP	Variable size payload	Address
-----	-----------------------	---------

Example Nostrum network

- Mesh network topology
- Memoryless switch
- Packet-based switching

- Local information used to distribute packets and avoid hot spots
- Effective in removing contention at network center

Transport layer

- Decompose and reconstruct information
- Important choices
 - Packet granularity
 - Admission/congestion control
 - Packet retransmission parameters
- All these factors affect heavily energy and performance
- Application-specific schemes vs. standards

Benefits of packets

- Reliable error-control mechanism

 With small overhead
- Exploit different routing paths

 Spread information to avoid congestion
- Several user-controllable parameters

 Size, retransmission schemes, ...
- Use retransmission rate for calibrating parameters

Adaptive Low-Power Transmission Scheme

De Micheli

MPSOC -03

Outline

- Introduction and motivation
- Physical limitations of on-chip interconnect
- Communication-centric design
- On-chip networks and protocols
- Software aspects of on-chip networks

Software layers

 \bigcirc

Software

application system

Architecture and control

> transport network data link

System software – OS, RTOS, run-time scheduler

 Component and network dependent

Application software

 User and standard applications

Physical wiring

De Micheli

System view of communication

Programming models

- Abstraction:
 - Hides hardware complexity
 - Enhances code longevity and portability
- Programming paradigms
 Shared memory
 - Parallel tasks access shared memory locations
 - Message passing
 - Tasks have separate address spaces and communication is done via explicit messages

Programming paradigms

- Shared memory

 Easier to write code
 More hw needed to support high performance
- Message passing
 - Scalable
 - Makes communication needs explicit
 - More predictable

Message passing is likely to be the paradigm of choice for programming networked SoCs

Middleware

- Communication middleware is the software layer between sw programs and communication hw
- Requirements:
 - Provide safe and balanced resource access
 - Scheduling communication
 - Task synchronization
 - Management of peripherals
- Modeling and abstraction
 - Sw applications communicate via APIs
 - Hw abstraction layer (HAL) is the hw view to the programmer

Middleware design challenges

- Trade off hw and sw support for communication – Hw/Sw co-design issue
- Balance guaranteed and best-effort services
- Support high-throughput, low-latency communication
 - Few sw layers
 - Low-overhead transactions
- Simple, scaleable, portable, robust, …

Software control of networked SoCs

- Exploit widely-varying loads on components and on communication links
- Power-manageable components:
 - Dynamic voltage scaling (DVS)
 - Adjust frequency and voltage
 - Dynamic power management (DPM)
 - Set idle components into sleep states
- Dynamic information-flow management
 - Reconfigure network and protocols dynamically

Dynamic network-flow management (Pleiades)

Application layer

- Given a platform, the performance and energy to realize a function depends on software
 - Different algorithms to embody a function (e.g., sorting)
 - Different coding styles
 - Different instruction streams (e.g. assembly)
- Software production tools need to address both performance and energy goals

Application software development tools

- Software synthesis
 - Source-code generation
 - Source-level optimizing transformations
- Application-specific compilation

 Choice of instructions, registers, schedule
- Software design tools need network awareness to be effective
 - Balance computation, storage and communication

Summary Problem analysis

- Electronic embedded systems require SoCs with high QoS and low energy consumption
- The challenge of SoC design is in interconnecting high-level components
- Design has to cope with non-determinism
 High-level abstraction
 Physical properties of material
- The physical interconnection is unreliable

Summary Design strategies

- Reliable communication is achieved by layered design methods:
 - Learn from network and MP design
 - For application-specific SoCs, the network and protocols can be tailored to the application
- Encoding, packet switching and routing provide a new view of interconnect design
- The system and application software design are key to manage components and networks

To probe further

- Ackland et al., A Single Chip, 1.6 Billion, 16b MAC/s Multiprocessor DSP, IEEE JSSC, March 2000
- Agrawal, Raw Computation, Scientific American, August 1999
- Benini and De Micheli, Networks on Chip: A New SoC Paradigm, IEEE Computer, January 2002
- Benini and De Micheli, Powering Networks on Chip, Proceedings ISSS, October 2001
- Bertozzi, Benini and De Micheli, Low-Power Error-Resilient Codes for On-Chip Data Busses, DATE 2002
- Dally and Towles, Route Packets, not Wires, DAC 2001
- Guerrier and Grenier, A Generic Architecture for On-Chip Packet Switched Interconnections, DATE 2000
- Ho, Mai and Horowitz, The Future of Wires, IEEE Proceedings, January 2001
- Hu and Marculescu, Energy Aware Mapping for Tile-Based NoC Architectures, ASPDAC 2003
- Rijpkema et al., Trade off in the Design of a Router with Both Guaranteed and Best-Effort Services for Networks on Chip, DATE 2003
- Yoshimura et al., DS-CDMA Wired Bus with Simple Interconnection Topology for Parallel Processing System LSIs, ISSC 2000
- Worm, Ienne, Thiran and De Micheli, An Adaptive, Low-Power Transmission scheme for On-Chip Networks, ISSS 2002
- Ye, De Micheli, Benini, Packetized On-chip Interconnect Communication Analysis for MPSoCs, DATE 2003
- Zhang et al., A 1V Heterogeneous Reconfigurable DSP IC for Wireless Baseband Digital Signal Processing, JSSC, November 2000

De Micheli

MPSOC -03

