
1

IBM Labs in Haifa © 2003 IBM Corporation

Functional Verification and the SoC Challenge

Avi Ziv
Simulation Based Methods
IBM Research Lab in Haifa

IBM Labs in Haifa

© 2003 IBM Corporation2 MPSOC 03

Outline

� Introduction to functional verification
� What is functional verification?
� Leading functional verification techniques

� The SoC challenge
� What’s new in SoC design?
� Why is verification difficult for SoCs?

� Possible solutions
� Raise the abstraction level
� Test generation examples

2

IBM Labs in Haifa

© 2003 IBM Corporation3 MPSOC 03

Specification Implementation=
~
?

What is Functional Verification?

� Functional verification is the process that ensures conformance of a
design to its functional specification.

� Major Challenges:
�Market requirements get tougher
�Micro-architecture complexities grow
�Silicon technologies improve

� Functional verification takes up to 70% of the design resources

IBM Labs in Haifa

© 2003 IBM Corporation4 MPSOC 03

Functional Verification Techniques

� Formal verification
� A.k.a. static verification
� “Mathematically” prove the correctness of the implementation

� Simulation-based methods
� A.k.a. dynamic verification
� Find bugs by executing the implementation and checking its

behavior

� Semi-formal techniques
� Combine the good (and bad) of both static and dynamic worlds

3

IBM Labs in Haifa

© 2003 IBM Corporation5 MPSOC 03

Key Formal Verification Method: "Model Checking"

� A method for mathematically proving functional properties on the design
� Proving a property means showing that it holds for all possible input

combinations, across all execution paths
� No tests required

� Model checking operation method:
� Represent design as a finite state machine
� Automatically calculate truth or falsity of specification by traversing

the state space

if a request is received,
it will be processed

within 3 clocks
0

1

2 5

6

34

process

request

request

IBM Labs in Haifa

© 2003 IBM Corporation6 MPSOC 03

Formal Verification Limitations

� State-space explosion
� Need to check all possible states in the implementation
� Number of states grows exponentially with the number of state

variables
� Current tools are limited to several hundreds or thousands of

variables
� Answer only the questions it is asked

� Translation of English specification to “formal” properties
� Checked properties may not cover the entire specification

4

IBM Labs in Haifa

© 2003 IBM Corporation7 MPSOC 03

Dynamic Verification

� Method of operation – execute the implementation on an input testcase
and check that it behaves according to the specification
� Size of the design is not a limitation
� Checking is limited only to the given testcase
� Unexpected errors may be detected

� Dynamic verification is comprised of
� Execution techniques

� Simulation, emulation, etc.
� Testcase generation
� Checking
� Coverage analysis

IBM Labs in Haifa

© 2003 IBM Corporation8 MPSOC 03

Testcase Creation

� Goal: create input pattern that exercises the design
� The main challenge:

� Create testcases that reach all the dark corners of the design
� Test patterns need to be

� Legal
� Behavior of design under the test is fully specified

� Interesting
� Improve coverage
� Reach corner cases
� Find bugs

� Meet specific user requirements

5

IBM Labs in Haifa

© 2003 IBM Corporation9 MPSOC 03

Testcase Creation Techniques

� Manual testcases
� Require a lot of effort and expertise
� Only a small number of such testcases can be created
� Mostly used to ensure that hard-to-reach scenarios are verified.

� Testbenches
� Code written in the design language at the top level of the hierarchy
� Often simple, but may have some elements of randomness
� May generate testcases online

� Random Testcase Generators
� Software that creates multiple testcases
� Parameters control the generator in order to focus the testcases on specific

components and features
� Can create "tons" of testcases that have the desired level of randomness

IBM Labs in Haifa

© 2003 IBM Corporation10 MPSOC 03

Checking

� Collection of techniques and methods to ensure that the behavior of the
implementation during simulation is according to its specification

� Leading techniques
� Manual checking
� Golden (reference) model and expected results
� Assertions
� Behavioral rules

6

IBM Labs in Haifa

© 2003 IBM Corporation11 MPSOC 03

Checking Techniques

� Manual checking
� View waveform and trace files to

analyze the behavior
� Slow, inefficient, and error prone

data
hold
trdy

frame
irdy

Wrt Rd WrtRetry

� Golden models and expected results
�Use the behavior of a golden model

to predict the behavior of the design
under test

�Usually limited to external behavior
�Expected results may also be

embedded in the testcase

Testcase =

Golden model

DUT

IBM Labs in Haifa

© 2003 IBM Corporation12 MPSOC 03

Checking Techniques (2)

� Assertions (or properties checking)
� Starting from simple assert statements

� assert (length > 0)reprot “Illegal Length”

� Assertions can be manually inserted by the designer into the source code
of the design, or they can be externally created and inserted by verification
tools

� Current assertion techniques use temporal property specification languages
to specify complex assertions
� {true[*]; req; ack} => {start; data[8]; end}

� Behavioral rules
� Rules that describe the expected behavior of the design
� Usually rules are more abstract than assertions

� Not limited to specific facilities
� Example: scoreboard

� Check that everything that goes in also comes out

7

IBM Labs in Haifa

© 2003 IBM Corporation13 MPSOC 03

Coverage

� Testing is based on samples
� Cannot run all possible tests
� Need to know that all areas of the application are tested

� Solution: Coverage Analysis
� The main ideas behind coverage:

� Systematically create a list of tasks (the testing requirements)
� Check that each task is covered during the testing

� Main Coverage Techniques
� Code coverage: coverage models that are based on the

implementation code
� Functional coverage: coverage models that are based on the

functionality of the design

IBM Labs in Haifa

© 2003 IBM Corporation14 MPSOC 03

Semi-formal Techniques

� Use formal methods to increase the efficiency of simulation
or
Use simulation to enhance the capabilities of formal methods
� Use formal methods to traverse an abstract model of the design and

generate tests
� Use static analysis to identify potential corner cases for checkers
� Use simulation to reach interesting states and exhaustively search

around them
� Symbolic simulation

8

IBM Labs in Haifa

© 2003 IBM Corporation15 MPSOC 03

Outline

� Introduction to functional verification
� What is functional verification?
� Leading functional verification techniques

� The SoC challenge
� What’s new in SoC design?
� Why is verification difficult for SoCs?

� Possible solutions
� Raise the abstraction level
� Test generation examples

IBM Labs in Haifa

© 2003 IBM Corporation16 MPSOC 03

What’s New in SoC Design?

� SoCs change the design world
� Larger and more complex chips
� Shorter time to market
� Smaller design teams
� Heavy use of pre-existing cores

(IPs)
� Heavy use of processors and

DSPs
� … and software

� How does this affect verification?

PLB

Interrupt
Controller

Micro-
processorDSPPLB

Arbiter

DMA
EngineBridge

Custom
LogicSRAM

PCI

EMACUSB

9

IBM Labs in Haifa

© 2003 IBM Corporation17 MPSOC 03

Large Designs, Small Teams,

� SoCs are closer to large computer systems than to ASICs
� But they are built with small teams and short development times

� Verification team cannot gain a deep understanding of the target design
� Not enough resources to develop verification tools specific for the design

� Verification teams must rely on existing tools and technologies
� Combined with generic verification knowledge of the domain
� With small adaptations to the specific design

IBM Labs in Haifa

© 2003 IBM Corporation18 MPSOC 03

Heavy Use of Cores

☺ Core are more reliable than custom logic
� They have been used and tested before

☺ Unit (core) verification may not be necessary

� Cores are often black boxes
� Hard to look inside

� The cores may not be verified for the specific use scenario of the system
� Simulation model of the cores may not be available
� Debugging is much harder

� Is the bug in the core or the interface?
� How do we debug the internals of the core?

� Integration is more difficult

10

IBM Labs in Haifa

© 2003 IBM Corporation19 MPSOC 03

Processors and Software

� Processors are big and complex cores
� … and they are programmable

� Processors provide an efficient way to irritate the rest of the system
� How do we treat the system software?

� Ignoring it means we are not testing the entire system
� Leaving it in means:

� Harder to use the processor to test the rest of the system
� Harder to stress the system

� SW / HW co-simulation is a major issue
� Simulating the processor can significantly slow down simulation
� Hardware and software operate at different rates
� Modeling solutions are needed (and exist)

IBM Labs in Haifa

© 2003 IBM Corporation20 MPSOC 03

Outline

� Introduction to functional verification
� What is functional verification?
� Leading functional verification techniques

� The SoC challenge
� What’s new in SoC design?
� Why is verification difficult for SoCs?

� Possible solutions
� Raise the abstraction level
� Test generation examples

11

IBM Labs in Haifa

© 2003 IBM Corporation21 MPSOC 03

Solution: Raise the Abstraction Level

� Raise the level of abstraction to the “right” level
� Focus at the level in which the design complexity lies

� Advantages
� Match shift in design paradigm
� Improved productivity due to reasoning at the "right" level
� Early start of the verification effort

� Verification can start on high-level models of the design
� But the same methodology and tools can be used at lower levels

� New building blocks
� Signals ⇒ packets ⇒ complex transactions
� Components (cores) instead of registers, FSMs, etc.

IBM Labs in Haifa

© 2003 IBM Corporation22 MPSOC 03

First Step - Transactors

� Translates between high-level verification environment and the design
� Three types of transactors are needed

� Translate transactions in the testcase to signals in the design
interface

� Translate signals in the design interface to transactions
� Translate between internal facilities and transactions

� Most existing verification environments support transactors

Trans-
actorRead (10) Trans-

actor Read (10)

Trans-
actor Read (10)

12

IBM Labs in Haifa

© 2003 IBM Corporation23 MPSOC 03

Transactors Are Not Enough

� Need new verification techniques and methodologies to address the
SoC paradigm and its challenges
� Transaction-based checking and coverage
� System-level test generators
� New techniques and applications for formal verification

� Protocol verification

Test
Generator

BFM BFMBFM

Mon

Mon

Mon

IBM Labs in Haifa

© 2003 IBM Corporation24 MPSOC 03

Checking Techniques for SoC Verification

� Golden model / expected results
� Results are hard to predict because of parallel nature of systems
� Possible solutions:

� Cycle-accurate golden model
� Ignore ordering

� Needed assertions
� On the interfaces to detect protocol violations

� Should be provided by the developers of the cores
� Transaction level assertions

� New assertion language with transaction vocabulary
� Length, fields, actors, …

� Detection of internal transactions may be difficult

13

IBM Labs in Haifa

© 2003 IBM Corporation25 MPSOC 03

Checking Techniques for SoC Verification (2)

� Behavioral rules can be used to check many aspects of the behavior
� Transaction ordering, coherence, …

� Need means to describe the rules and check them
� Example: When a write transaction is handled, all previous read

transactions have finished
� Look for all read transactions and check their status (finished or not)
� Check their order with respect to the write transaction

� Data flow is a good source for behavioral rules at the system level
� Record the history of each transaction
� Analyze the behavior of the system according to the flow of

transactions and their interactions

IBM Labs in Haifa

© 2003 IBM Corporation26 MPSOC 03

Test Generation Techniques for SoC Verification

� Test generators that are specifically designed to address SoC and
system verification challenges
� Speak the “system jargon”

� Transactions, components, …
� Concentrate on interactions between components

� Not their internal behavior

� Two examples
� Esterel Studio from Esterel-Technologies
� X-Gen from IBM

14

IBM Labs in Haifa

© 2003 IBM Corporation27 MPSOC 03

Test Generation with Esterel Studio

� Goal: Systematic verification of IP interaction to ensure global functional
behavior
� Assumes that each IP has been individually verified

� Generates tests that cover the interactions between IPs
� Coverage is systematic, well-defined, and complete

� Based on the hierarchical concurrent finite state machines (HFSM)
formalism

� Four step process:
1. Model the system as an HFSM
2. Create symbolic (abstract) tests
3. Transform the tests to concrete tests (refinement)
4. Simulate the concrete tests

IBM Labs in Haifa

© 2003 IBM Corporation28 MPSOC 03

Step 1 – Model the System

� Everything is modeled as an HFSM
� Global HFSM for configuration and test specification
� Environment HFSM for allowing only legal inputs
� One HFSM per IP

� Black box model of the IPs
� Abstract away the data computation performed in the IP
� Model configuration and interactions with other IPs

� Interactions are modeled at the transaction level
� Outputs are symbolic commands of the IP
� Inputs are arbitrary

� Whatever is convenient to drive the tests

15

IBM Labs in Haifa

© 2003 IBM Corporation29 MPSOC 03

Step 2 – Create Symbolic Tests

� Use BDD-based traversal engine to compute all the possible paths to
the test_completed state in the global test scheduling FSM
� Each path is associated with an input sequence

� Transform the input sequences into output sequences using the Esterel
Studio simulator

� The resulting sequences are the commands to, and by, the IPs that
create the requested scenario

Config_data_ch_1

Req_dst_wav req_src

Write_frame

IBM Labs in Haifa

© 2003 IBM Corporation30 MPSOC 03

Config_data_ch_1

Req_dst_wav req_src

Write_frame

Step 3 – Create Concrete Tests

� Use library of elementary drivers and scripts that translate transactions
in the symbolic test into concrete action in the design

� The drivers are typically
� C / C++ routines for the processors and DSPs
� Configuration commands for IPs
� BFM controls

DMA_ENG.Config(CH_1, parm)

PCI_BFM.SendStartReq(WAV);

Void Write_frame (data){
DMA_ENG.Init (&data,CH1);
Start_transfer();
Wait_for_int (DAM_ENG);

}

16

IBM Labs in Haifa

© 2003 IBM Corporation31 MPSOC 03

X-Gen Overview

� Applicable to a large variety of systems
� Generic engine combined with system-specific model

� Separation between system description and test description

� Strong test description capabilities
� Request file language

� System knowledge is embedded in the tool and in the system model
� Enables generation of interesting tests
� Reduces user labor
� A 'good enough' model

IBM Labs in Haifa

© 2003 IBM Corporation32 MPSOC 03

Abstract Test
CaseRequest File X-Gen Engine

Interaction
Configuration

Component Type

Concrete Test
Case

Refinement

Abstract Test
Case

Abstract System Model

X-Gen Structure

17

IBM Labs in Haifa

© 2003 IBM Corporation33 MPSOC 03

PLB

Interrupt
Controller

Micro-
processorDSPPLB

Arbiter

DMA
Engine

Bridge
Custom
Logic

SRAM

PCI

EMACUSB

Modeling a System - Component Types

� Component types:
Internal resources, ports, behavior

Bridge

O
pe

ra
tio

n

Le
ng

th

A
dd

re
ss

D
at

a

Le
ng

th

D
at

a

A
dd

re
ss

O
pe

ra
tio

n

M
y

B
rid

ge

PCI Port

PLB Port

Tr
an

sl
at

io
n

Ta
bl

e
2

Tr
an

sl
at

io
n

Ta
bl

e
1

ABC Register

DCE Register

XYZ Register

IBM Labs in Haifa

© 2003 IBM Corporation34 MPSOC 03

A DMA Interaction

Modeling a System - Interactions

� Interactions: Acts, actors

� A CPU stores to the doorbell
register of the DMA engine

� The data is moved from the
USB port to a memory

� The DMA engine interrupts
the initiating CPU

PLB

Interrupt
Controller

Micro-
processorDSPPLB

Arbiter

DMA
Engine

Bridge
Custom
Logic

SRAM

PCI

EMACUSB

18

IBM Labs in Haifa

© 2003 IBM Corporation35 MPSOC 03

PLB

Interrupt
Controller

Micro-
processorDSPPLB

Arbiter

DMA
Engine

Bridge
Custom
Logic

SRAM

PCI

EMACUSB

Collisions on L2
cache lines

Short DMA transfer
size

Translation table
entry reuse

Modeling a System - Testing Knowledge

� Testing knowledge improves test quality
� Aimed at 'interesting' events

� Testing knowledge can be generic or system dependent
� Modeling testing knowledge: For component types and interactions

IBM Labs in Haifa

© 2003 IBM Corporation36 MPSOC 03

Generation Directives: Request Files

Specifying a scenario
� Interactions as building blocks
� Restrict actors, properties
� Inter-interaction relations

Request file

All of

Repeat x10One of

DMA
transfer

CPU load /
store Interrupt

Read: 80
Write: 20

Address
Collision: 65%

The Bug

Intelligent background noise
� Built-in testing knowledge
� User direction

19

IBM Labs in Haifa

© 2003 IBM Corporation37 MPSOC 03

Esterel-Studio and X-Gen Comparison

� The tools have a lot in common
� Use declarative model of the system
� The system is modeled using components and transactions
� Test is generated at the system level

� Refinement engines translate the test to the components level
� But there are differences

� Modeling philosophy
� Esterel-Studio – Abstract FSMs
� X-Gen – Constraint networks

� X-Gen generates random tests
� Esterel-Studio can model the system software

IBM Labs in Haifa

© 2003 IBM Corporation38 MPSOC 03

Summary

� Functional verification is the bottleneck of the design process
� SoC verification raises new challenges for functional verification

� Larger systems
� Use of existing cores
� Processors and software

� Methodology for SoC verification should be based on raising the level of
abstraction
� Components and transactions instead of registers and signals

� Some specific solutions for SoC verification exist
� Esterel-Studio, X-Gen, …

� But many more are still needed

20

IBM Labs in Haifa

© 2003 IBM Corporation39 MPSOC 03

