Functional Verification and the SoC Challenge

Avi Ziv
Simulation Based Methods
IBM Research Lab in Haifa

IBM Labs in Haifa © 2003 IBM Corporation

@ \ IBM Labs in Haifa

Outline

® Introduction to functional verification
® What is functional verification?
@ Leading functional verification techniques

® The SoC challenge
® What's new in SoC design?
@ Why is verification difficult for SoCs?

©® Possible solutions

® Raise the abstraction level
@ Test generation examples

2 MPSOC 03 © 2003 IBM Corporation




@ | IBM Labs in Haifa

What is Functional Verification?

© Functional verification is the process that ensures conformance of a
design to its functional specification.

I

Specification Implementation

© Major Challenges:

@ Market requirements get tougher
@ Micro-architecture complexities grow
@ Silicon technologies improve

@ Functional verification takes up to 70% of the design resources

s

MPSOC 03 © 2003 IBM Corporation

@ \ IBM Labs in Haifa

Functional Verification Techniques

©® Formal verification
® Ak.a. static verification

@ “Mathematically” prove the correctness of the implementation

©® Simulation-based methods

@ Ak.a. dynamic verification

@ Find bugs by executing the implementation and checking its
behavior

© Semi-formal techniques

® Combine the good (and bad) of both static and dynamic worlds

MPSOC 03 © 2003 IBM Corporation




@ | IBM Labs in Haifa

Key Formal Verification Method: "Model Checking”

© A method for mathematically proving functional properties on the design
@ Proving a property means showing that it holds for all possible input
combinations, across all execution paths
@ No tests required
© Model checking operation method:
@ Represent design as a finite state machine
@ Automatically calculate truth or falsity of specifi(:g’tion by traversing

the state space [—)
(-

if arequest is received,
it will be processed
within 3 clocks

‘ MPSOC 03 © 2003 IBM Corporation

Formal Verification Limitations

@ State-space explosion
@ Need to check all possible states in the implementation
@ Number of states grows exponentially with the number of state
variables
@ Current tools are limited to several hundreds or thousands of
variables
© Answer only the questions it is asked
@ Translation of English specification to “formal” properties
@ Checked properties may not cover the entire specification

6 MPSOC 03 © 2003 IBM Corporation




@ | IBM Labs in Haifa

Dynamic Verification

@ Method of operation — execute the implementation on an input testcase

and check that it behaves according to the specification

@ Size of the design is not a limitation

® Checking is limited only to the given testcase

@ Unexpected errors may be detected

€ Dynamic verification is comprised of
@ Execution techniques
& Simulation, emulation, etc.
@ Testcase generation
@ Checking
® Coverage analysis

7 | MPSOC 03

© 2003 IBM Corporation

@ \ IBM Labs in Haifa

Testcase Creation

© Goal: create input pattern that exercises the design

€ The main challenge:

@ Create testcases that reach all the dark corners of the design

@ Test patterns need to be
@ Legal

< Behavior of design under the test is fully specified

@ Interesting
© Improve coverage
& Reach corner cases
® Find bugs
@ Meet specific user requirements

8 MPSOC 03

© 2003 IBM Corporation




@ | IBM Labs in Haifa

Testcase Creation Techniques

€ Manual testcases
@ Require a lot of effort and expertise
@ Only a small number of such testcases can be created
@ Mostly used to ensure that hard-to-reach scenarios are verified.
© Testbenches
@ Code written in the design language at the top level of the hierarchy
@ Often simple, but may have some elements of randomness
& May generate testcases online
€ Random Testcase Generators
@ Software that creates multiple testcases

@ Parameters control the generator in order to focus the testcases on specific
components and features

@ Can create "tons" of testcases that have the desired level of randomness

9 MPSOC 03 © 2003 IBM Corporation

@ \ IBM Labs in Haifa

Checking

@ Collection of techniques and methods to ensure that the behavior of the
implementation during simulation is according to its specification

® Leading techniques
® Manual checking
@ Golden (reference) model and expected results
@ Assertions
® Behavioral rules

10 MPSOC 03 © 2003 IBM Corporation




@ | IBM Labs in Haifa

Checking Techniques

© Manual checking

@ View waveform and trace files to  [me oo T T T TP ]
analyze the behavior Eotd i bl
ata /=
@ Slow, inefficient, and error prone we RA Rety wit

© Golden models and expected results
@ Use the behavior of a golden model Golden model
to predict the behavior of the design
under test Testcase

@ Usually limited to external behavior

@ Expected results may also be
embedded in the testcase

DUT

11 ‘ MPSOC 03 © 2003 IBM Corporation

@ \ IBM Labs in Haifa

Checking Techniques (2)

© Assertions (or properties checking)
@ Starting from simple assert statements
@ assert (length > O)reprot “Illegal Length”

@ Assertions can be manually inserted by the designer into the source code
of the design, or they can be externally created and inserted by verification
tools

@ Current assertion techniques use temporal property specification languages
to specify complex assertions
® {true[*]; req; ack} => {start; data[8]; end}
€ Behavioral rules
@ Rules that describe the expected behavior of the design
@ Usually rules are more abstract than assertions
© Not limited to specific facilities
@ Example: scoreboard
& Check that everything that goes in also comes out

12 ‘ MPSOC 03 © 2003 IBM Corporation




@ | IBM Labs in Haifa

Coverage

@ Testing is based on samples
@ Cannot run all possible tests
® Need to know that all areas of the application are tested
@ Solution: Coverage Analysis
€ The main ideas behind coverage:
@ Systematically create a list of tasks (the testing requirements)
@ Check that each task is covered during the testing
€ Main Coverage Techniques

@ Code coverage: coverage models that are based on the
implementation code

@ Functional coverage: coverage models that are based on the
functionality of the design

13 MPSOC 03 © 2003 IBM Corporation

@ \ IBM Labs in Haifa

Semi-formal Techniques

® Use formal methods to increase the efficiency of simulation
or
Use simulation to enhance the capabilities of formal methods

@ Use formal methods to traverse an abstract model of the design and
generate tests

Use static analysis to identify potential corner cases for checkers

@

@ Use simulation to reach interesting states and exhaustively search
around them

@

Symbolic simulation

14 MPSOC 03 © 2003 IBM Corporation




@ | IBM Labs in Haifa

Outline

® Introduction to functional verification
@ What is functional verification?
@ Leading functional verification techniques

® The SoC challenge
® What's new in SoC design?
@ Why is verification difficult for SoCs?

©® Possible solutions
@ Raise the abstraction level
@ Test generation examples

15

MPSOC 03

© 2003 IBM Corporation

@ \ IBM Labs in Haifa

What's New in SoC Design?

® SoCs change the design world

@

@
@
@
@
@

Larger and more complex chips

Shorter time to market |

Smaller design teams

Heavy use of pre-existing cores

(IPs)

Heavy use of processors and
DSPs

... and software

© How does this affect verification?

16

MPSOC 03

PLB DSP Micro- Interrupt
Arbiter processor Controller
| | | |
PLB |
| | | |
Custom . DMA
SRAM a5 Bridge Engie
|
| PC |
| |
uUsB EMAC
$ A
v

© 2003 IBM Corporation




@ | IBM Labs in Haifa

Large Designs, Small Teams,

® SoCs are closer to large computer systems than to ASICs

@ But they are built with small teams and short development times
© Verification team cannot gain a deep understanding of the target design
€ Not enough resources to develop verification tools specific for the design

=>» Verification teams must rely on existing tools and technologies
@ Combined with generic verification knowledge of the domain
@ With small adaptations to the specific design

17 MPSOC 03 © 2003 IBM Corporation

@ \ IBM Labs in Haifa

Heavy Use of Cores

© Core are more reliable than custom logic
@ They have been used and tested before
© Unit (core) verification may not be necessary

® Cores are often black boxes
@ Hard to look inside
The cores may not be verified for the specific use scenario of the system
Simulation model of the cores may not be available
Debugging is much harder
@ Is the bug in the core or the interface?
® How do we debug the internals of the core?
® Integration is more difficult

® ® 6

18 ‘ MPSOC 03 © 2003 IBM Corporation




@ | IBM Labs in Haifa

Processors and Software

© Processors are big and complex cores
@ ... and they are programmable
@ Processors provide an efficient way to irritate the rest of the system
€ How do we treat the system software?
@ Ignoring it means we are not testing the entire system
@ Leaving it in means:
© Harder to use the processor to test the rest of the system
© Harder to stress the system
@ SW /HW co-simulation is a major issue
© Simulating the processor can significantly slow down simulation
® Hardware and software operate at different rates
© Modeling solutions are needed (and exist)

19 ‘ MPSOC 03 © 2003 IBM Corporation

@ \ IBM Labs in Haifa

Outline

® Introduction to functional verification
® What is functional verification?
@ Leading functional verification techniques

® The SoC challenge
® What's new in SoC design?
@ Why is verification difficult for SoCs?

©® Possible solutions

® Raise the abstraction level
@ Test generation examples

20 MPSOC 03 © 2003 IBM Corporation

10



@ | IBM Labs in Haifa

Solution: Raise the Abstraction Level

© Raise the level of abstraction to the “right” level
@ Focus at the level in which the design complexity lies
© Advantages
© Match shift in design paradigm
© Improved productivity due to reasoning at the "right" level
@ Early start of the verification effort
© Verification can start on high-level models of the design
© But the same methodology and tools can be used at lower levels
© New building blocks
@ Signals = packets = complex transactions
® Components (cores) instead of registers, FSMs, etc.

21 MPSOC 03 © 2003 IBM Corporation

@ \ IBM Labs in Haifa

First Step - Transactors

© Translates between high-level verification environment and the design
@ Three types of transactors are needed

@ Translate transactions in the testcase to signals in the design
interface

@ Translate signals in the design interface to transactions
@ Translate between internal facilities and transactions
© Most existing verification environments support transactors

==
111

et [ ] I ::Read a0 >

22 ‘ MPSOC 03 © 2003 IBM Corporation

11



@ | IBM Labs in Haifa

Transactors Are Not Enough

€ Need new verification techniques and methodologies to address the
SoC paradigm and its challenges

@ Transaction-based checking and coverage
@ System-level test generators

® New techniques and applications for formal verification
® Protocol verification

(s =T P! Geners
Generator

[ g

23 MPSOC 03 © 2003 IBM Corporation

@ \ IBM Labs in Haifa

Checking Techniques for SoC Verification

© Golden model / expected results
@ Results are hard to predict because of parallel nature of systems
@ Possible solutions:
® Cycle-accurate golden model
<© Ignore ordering
@ Needed assertions
@ On the interfaces to detect protocol violations
< Should be provided by the developers of the cores
@ Transaction level assertions
< New assertion language with transaction vocabulary
® Length, fields, actors, ...
© Detection of internal transactions may be difficult

24 MPSOC 03 © 2003 IBM Corporation

12



@ | IBM Labs in Haifa

Checking Techniques for SoC Verification (2)

© Behavioral rules can be used to check many aspects of the behavior
@ Transaction ordering, coherence, ...
€ Need means to describe the rules and check them
@ Example: When a write transaction is handled, all previous read
transactions have finished
@ Look for all read transactions and check their status (finished or not)
© Check their order with respect to the write transaction
@ Data flow is a good source for behavioral rules at the system level
® Record the history of each transaction

@ Analyze the behavior of the system according to the flow of
transactions and their interactions

25 MPSOC 03 © 2003 IBM Corporation

@ \ IBM Labs in Haifa

Test Generation Techniques for SoC Verification

@ Test generators that are specifically designed to address SoC and
system verification challenges

@ Speak the “system jargon”
® Transactions, components, ...

@ Concentrate on interactions between components
© Not their internal behavior

@ Two examples

@ Esterel Studio from Esterel-Technologies
@ X-Gen from IBM

26 MPSOC 03 © 2003 IBM Corporation

13



@ | IBM Labs in Haifa

Test Generation with Esterel Studio

@ Goal: Systematic verification of IP interaction to ensure global functional
behavior

@ Assumes that each IP has been individually verified
€ Generates tests that cover the interactions between IPs
@ Coverage is systematic, well-defined, and complete

€ Based on the hierarchical concurrent finite state machines (HFSM)
formalism

€ Four step process:
1. Model the system as an HFSM
2. Create symbolic (abstract) tests
3. Transform the tests to concrete tests (refinement)
4. Simulate the concrete tests

27 MPSOC 03 © 2003 IBM Corporation

@ \ IBM Labs in Haifa

Step 1 — Model the System

@ Everything is modeled as an HFSM
@ Global HFSM for configuration and test specification
® Environment HFSM for allowing only legal inputs
® One HFSM per IP
© Black box model of the IPs
@ Abstract away the data computation performed in the IP
® Model configuration and interactions with other IPs
© Interactions are modeled at the transaction level
© Outputs are symbolic commands of the IP
@ Inputs are arbitrary
< Whatever is convenient to drive the tests

28 MPSOC 03 © 2003 IBM Corporation

14



@ | IBM Labs in Haifa

Step 2 — Create Symbolic Tests

© Use BDD-based traversal engine to compute all the possible paths to
the test_completed state in the global test scheduling FSM

@ Each path is associated with an input sequence

© Transform the input sequences into output sequences using the Esterel
Studio simulator

@ The resulting sequences are the commands to, and by, the IPs that
create the requested scenario

QE 1 m—
Ve

MPSOC 03 © 2003 IBM Corporation

Config_data_ch_1
Req_dst _wav reqg_src
Wite_frane

29

@ | IBM Labs in Haifa

Step 3 — Create Concrete Tests

@ Use library of elementary drivers and scripts that translate transactions
in the symbolic test into concrete action in the design

@ The drivers are typically
@ C/ C++ routines for the processors and DSPs
@ Configuration commands for IPs
© BFM controls

DVA_ENG. Config(CH 1, parm |

Config_data_ch_1
Req_dst _wav req_src
Wite_franme

PCl _BFM SendSt ar t Req( VWAV) ; |

30 MPSOC 03 © 2003 IBM Corporation

15



@ | IBM Labs in Haifa

X-Gen Overview

© Applicable to a large variety of systems
@ Generic engine combined with system-specific model

@ Separation between system description and test description

@ Strong test description capabilities
@ Request file language

® System knowledge is embedded in the tool and in the system model
@ Enables generation of interesting tests
@ Reduces user labor
@ A'good enough' model

3 | MPSOC 03

© 2003 IBM Corporation

@ \ IBM Labs in Haifa

X-Gen Structure

Abstract System Model
Interaction Component Type
Configuration
v
Request File X-Gen Engine Abst(r:act G
ase

Concrete Test
Case

32 MPSOC 03 © 2003 IBM Corporation

16



@ | IBM Labs in Haifa

Modeling a System - Component Types

© Component types:

Internal resources, ports, behavior

ﬁ S § © PLB DSP Micro- Interrupt
3 3 g 8 (g processor Controller
< . o
| | |
. PLB Port AIE PLB |
& [Crecreme ]| £||2 [ [
= cl= Custom DMA
= sl 2 u -
o % }_‘gi Logic Bridge Engine
> %) 7
= [
o | =
PCI Port RC! | |
b 3 g a UsB EMAC
7y
v
33 MPSOC 03 © 2003 IBM Corporation
@ \ IBM Labs in Haifa
Modeling a System - Interactions
© Interactions: Acts, actors
A DMA Interaction PLB DSP Micro- Interrupt
Arbiter processor Controller
| | Al |
@ A CPU stores to the doorbell e [ ——
register of the DMA engine P I [ [T
 I—
. SRAM cf;;?;“ Bridge E?\Z::e
€ The data is moved from the I
USB port to a memory [ Pl |
|1 |
€ The DMA engine interrupts uUsB EMAC
the initiating CPU

34

MPSOC 03

© 2003 IBM Corporation

17



@ | IBM Labs in Haifa

Modeling a System - Testing Knowledge

@ Testing knowledge improves test quality
@ Aimed at 'interesting' events
@ Testing knowledge can be generic or system dependent
€ Modeling testing knowledge: For component types and interactions

PLB Micro- Interrupt

Arbiter processor Controller
Short DMA transfer
: ] | Al |
size
-|:$ pe L ——— |
v I [ | | lv

| I—
— TSRAM Custgm Bridge DMA
Collisions on L2 Logic Engine
cache lines ]
— 1 1 ]
Translation table USB EAE
entry reuse
% A
v

35 ‘ MPSOC 03 © 2003 IBM Corporation

@ \ IBM Labs in Haifa

Generation Directives: Request Files

Request file
Address
Specifying a scenario Collision: 65%
© Interactions as building blocks Read: 80 All of
® Restrict actors, properties write: 20
© Inter-interaction relations One of Repeat x10

Intelligent background noise
€ Built-in testing knowledge  |CPU load / DMA
© User direction Sl FEISED

Interrupt

36 ‘ MPSOC 03 © 2003 IBM Corporation

18



@ | IBM Labs in Haifa

Esterel-Studio and X-Gen Comparison

© The tools have a lot in common
@ Use declarative model of the system
@ The system is modeled using components and transactions
@ Testis generated at the system level
< Refinement engines translate the test to the components level
€ But there are differences
® Modeling philosophy
& Esterel-Studio — Abstract FSMs
& X-Gen - Constraint networks
@ X-Gen generates random tests
@ Esterel-Studio can model the system software

37 MPSOC 03 © 2003 IBM Corporation

@ \ IBM Labs in Haifa

Summary

© Functional verification is the bottleneck of the design process
© SoC verification raises new challenges for functional verification
@ Larger systems
@ Use of existing cores
@ Processors and software

€ Methodology for SoC verification should be based on raising the level of
abstraction

® Components and transactions instead of registers and signals
© Some specific solutions for SoC verification exist

@ Esterel-Studio, X-Gen, ...
€ But many more are still needed

38 MPSOC 03 © 2003 IBM Corporation

19



39

U

/

MPSOC 03

© 2003 IBM Corporation

20



