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Overview
B

= Introduction

= Video Signal Processors, Network of Alus
= Dynamic Reconfiguration

= Conclusions
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System on a chip
|

Silicon Technology is providing the opportunity to
add new functionality and integrate several functions
and allow more programmable/reconfigurable systems.

First System  Second System __time N
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m Theo Claasen: keynote Dac2000

Rapid silicon prototyping
Design cycle benefits

Conventional Design Procedgs&time rigBf)
[ N 0 St
Release

RSP Design Process

Production
Release

- HW Development and Validation - Silicon Fabrication

- Placement, Routing & Physical Verificati SW Development and Validation

® Faster chip development
- More than 50% total design cycle reduction
- True HW / SW cdevelopment

® Higher probability ofdsixrshiccess
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m Future: The prototype = product

= [rade-off between
« HW/SW trade-off: Processor and reconfigurable fabric
= Granularity issue: fine grain processing ILP, or Task level
= bit oriented — word oriented
» distributed on chip memory

= Large number of architectural choices:
= Which is ‘the right one’ for a particular application domain?
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Problem definition
B

= Perform processing on a stream of data
= Sampling rates in the order of 100KHz to 100MHz
= per sample 1000 — 100,000 operations

Perform 1019-1011 operations/sec, like add, multiply etc.

Take a 200MHz Alu, still need 50-500 of them,
Solution: Time multiplex and multi-processor

Note: performance is a required part of the solution!
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u Revisit processor architectures

= Single Risc like processor

= ILP processing: VLIW for DSP, superscalar for general
purpose

= Very successful programming environment: compilers and
OS.

= Multi processor: no clear winning model, suggested to
move to chapter 11 in Computer Architecture, a
quantitative approach from Hennessy and Patterson

= Vector processing
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m What are the solution options

Concurrently execute 50- 500 operations every clock cycle.

= Mu
= Mu
= Bui

tiple Risc cores, e.g. ARM, MIPS etc.
tiple VLIW oriented DSPs, e.g TI, Starcore etc

d a bit oriented FPGA and synthesize everything on top

of that, including processors cores, packet routing
networks etc.

= Build a fabric of interconnected ALUs (coarse grained
FPGA)

SoC platforms exploiting the best part for the specific
application (part).
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m Multi processor challenges

= Programming language problem: no concurrency
= Limited extraction of ILP out of sequential program
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u Why can we program processors?

Model of Computation matched to the Model of the
Architecture

= C/C++: single point of control, loop : Memory model,
branch

= CSP (Hoare), Occam(2): Semantics of handshake in
Hardware: transputer channel

= Kahn Process Networks: distributed fifo organization,
semantics in hardware or software
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m Reconfigurable programming challenges

In general 3 problems;

1. Programming a network of ALUs/ bit cells in FPGA

2. Setting up the buffers and partitioning for the network
5. Dynamic reconfiguration management
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Architecture Design: Y - Chart
|

Benchmark driven, based on a Set of Applications

[Performance}
Data
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u What is an instruction set processor

= C/C++, Java programming

= Program control translated to branches (most of the time)
= for

s if
= Case statements
= Single Program counter
= Data cache and Instruction cache
= Time-multiplex with instructions over ALUs
= Load, Store architecture, contains a Register File

= Debug with single stepping, breakpoints and register views
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m Multi-processors

= Multiple instruction set processors:

programmers model?

cache coherence?

granularity at the instruction level required

Instruction Level parallelism limited to 4-5
= branch penalty in cycles

Operand routing and memory hierarchy are the cost
= load-store instructions 30% of all instructions
= L1 cache is half of the processor area
= cache works poorly for stream oriented computing
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m The Programmability Issue

= Extract fine grain Parallelism out C/C++/ Matlab/Java
= alias analysis and pointer problem
= Extract coarse grain Parallelism out C/C++/ Matlab/Java
= process notion
= Start with an fine grain Parallel description
=« Hardware description languages (VHDL/Verilog)
= Simulink environment, Signal Flow Graphs
= Start with an coarse grain Parallel description
= CSP, occam
= Kahn Process Networks
= System C

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-16



m Exampe VSP architecture, 12-bit Elements
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F VSP1 and VSP2 Layouts
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line delays for

luminance signal

m Example programming VSP with SFG
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B Signal Flow Graph Mapping

= Retiming, Delay management
= Partitioning, which part runs on which IC
= Scheduling, and processor allocation

= All for statically scheduled multi-rate signal flow graphs
= Basic operation translates to basic instruction

= explicitly programmed data memory storage

= NO pointers, no branches

= inherent stream semantics

= Used for complete HDTV studio Camera Development, and
next generation electronic X-ray equipment at Philips
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n Chameleon Second generation

= Network of interconnected ALUs (close to a VLIW)

= Explicit retiming methodology

= Programming in Simulink

= Buffer programming explicit with hardware specific choices

= Benchmark results for video and next generation cell
phones, base stations etc.
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Example Chameleon
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l Tile Architecture

= 16 DPUs with full Interconnect

= 4 16KByte Memories

= DMA to System

= 32 Connections to nearest Neighbor
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DPU datapath +control (conceptual)
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m DPU datapath Architecture (conceptual)
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Programming the System
.

s  Resource Access

= DPU Simulink Diagram Untimed
= Control Simulink Diagram Untimed
= Fabric Memory mapped

= CPU C code Linked via eFlow/INTs

= Peripherals Memory mapped/DMA

= Memories Memory mapped/DMA

= Programming Options
= Enter control and dataflow in Simulink

= C code entry with reference to dataflow kernels in fabric
= Kernels are built with Simulink

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-26



n Simulink based design entry systems

= Integrated entry and simulation environment

File Edit View Simulation Format Tools Help

D& +BR|DC  hEE&|

mymodel

(5]

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-27



m Detail - Scheduling and Mapping

Delay DPU Allocation

DPU Packing
A 4 A 4
Retime Retime
DFS l Fold

Delay DPU Allocation

P -

P

/depopulate

P+R

DFS = Data Flow Scheduler

Ctl Gen

l

Bit Gen

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers

2-28



m Reconfigurable programming challenges

In general 3 problems;

1. Programming a network of ALUs/ bit cell in FPGA

2. Setting up the buffers and partitioning for the network
5. Dynamic reconfiguration management
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Architecture Design: Y - Chart
|

Benchmark driven, based on a Set of Applications

[Performance}
Data

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-30



. Recommendation: Kahn Process Networks

Formal semantics, theory and ‘proof of concepts’ well
established

very well suited for stream oriented high-performance
signal processing, including dynamic dataflow.

abstraction from specific Hardware, Operating System and
device drivers

Extensive prototypes available: UC Berkeley, Caltech,
Leiden University, Philips Research

Compute result is independent of schedule
C++ stylized industry standard proposed in SystemC 2.0
Satisfies the goals
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m Producer-Consumer example (YAPI flavor)

Producer
#include "producer.h” #include "consumer.h"
#include <iostream> #include <assert.h>
Producer::Producer(const Id& n, Out<int>& 0) : #include <iostream>
Procgss(n), Consumer::Consumer(const Id& n, In<int>& i) :
out( id("out"), o) Process(n),
{} in( id("in"), i)
const char* Producer::type() const {}
{ const char* Consumer::type() const
return "Producer"; {
by return "Consumer";
void Producer::main() I
{ void Consumer::main()
std::cout << "Producer started" << std::endl; {
int n,j;
const int n = 1000;
std::cout << "Consumer started" << std::endl;
write(out, n);
read(in, n);
for (int i=0; i<n; i++)
{ for (int i=0; i<n; i++)
write(out, i); {
b read(in, j);
} assert(i==j);

}
}
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u Mapping Kahn Process Networks

Solve 1,2,3

= Input language: Stylized flavors of C++
= recommendation: SystemC dataflow proposal

= Map one or more processes onto a processor:
= generate buffer insertion (sometimes statically determined)

= generate schedule for switching between processes on the same
processor (sometimes statically determined)

= generate overall process for manipulation, preferably running on a
general processor

= synthesize run-time schedule or determine run-time scheduling
technique, potentially using thread schedulers or RTOS or OS
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New Systems
B

= Understand the application!

= On chip memory

= Multi processor, programmable and reconfigurable
= Power consumption of the complete IC needs to be constant
= The PROGRAMMERS view is making the difference

l
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m Programming Reconfigurable Systems

The ONLY interesting architectures are the ones you can
program/reconfigure.

Logic synthesis for a specific architecture <> programming
(FPGA problem)

In conventional processors 2/3 of the silicon is in cache
subsystems:

= abstraction for the programmer where the instructions or the data
are residing

= conceptually a shared memory model, even cache coherent multi
processors systems

It took the DSP world more then 10 years to learn: first
assembly and MAC, now RISC and VLIW and C compilers
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m Reconfigurable embedded systems

= Speclnt is irrelevant, EEMBC might be more relevant

= Rethink time-multiplexing:

= Processor

= instruction: compiler
= task: OS

= Reconfigurable system
= compute graph that is statically determined
= reconfigure dynamically: runtime support and buffer management.
= Extracting parallelism:
= Instruction Level Parallelsim: C is the problem NOT the application
= Task level: Wrong QUESTION!
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Summar
. Y

= Reconfigurable computing has many advantages over ASIC
and CPU/MPU

=« Large parallelism with no instruction overhead
= Customizable data path size
= Flexible (reconfigurable!)

= Itis still in its infancy

= Semantic gap between algorithms and circuits is still a major
obstacle

=« Hardware platforms are only now emerging commercially that are
designed for RC

= Mappings are often architecture specific
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Trends
B

= Think Y-chart: FIRST build a mapping environment, then
ask the question is this a good architecture.

= Often ad-hoc matching of the model of computation with
the model of the architecture -> formalize

= Very exciting time:
= hew tools
= hew architectures

= Reverse the world: silicon is cheap, concurrency and
communication is the problem,

= New programming paradigms
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