
Reconfigurable Systems in terms 
of Computer Architectures

Kees A. Vissers

Research Fellow, UC Berkeley
vissers@ieee.org

www.eecs.berkeley.edu/~vissers

July 10. 2003



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-2



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-3

Overview

Introduction
Video Signal Processors, Network of Alus
Dynamic Reconfiguration
Conclusions



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-4

System on a chip

Silicon Technology is providing the opportunity to
add new functionality and integrate several functions
and allow more programmable/reconfigurable systems.

time

Hardware, dedicated solutions

Software, programmable solutions

First System Second System



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-5

Theo Claasen: keynote Dac2000

PS
 -

T
h
e
o
 C
l
a
a
s
e
nD
A
C
 
2
0
0
0
 -
1
4

Rapid silicon prototyping
Design cycle benefits

RSP Design Process
Production
Release

Conventional Design Process (1sttime right Si)
Production
Release

SW Development and Validation

Silicon FabricationHW Development and Validation

Placement, Routing & Physical Verification

•Faster chip development
– More than 50% total design cycle reduction 

– True HW / SW co-development

•Higher probability of first-pass success



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-6

Future: The prototype = product

Trade-off between 
HW/SW trade-off: Processor and reconfigurable fabric
Granularity issue: fine grain processing ILP, or Task level
bit oriented – word oriented 
distributed on chip memory

Large number of architectural choices:
Which is ‘the right one’ for a particular application domain?



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-7

Problem definition

Perform processing on a stream of data
Sampling rates in the order of 100KHz to 100MHz
per sample 1000 – 100,000 operations

Perform 1010-1011 operations/sec, like add, multiply etc.

Take a 200MHz Alu, still need 50-500 of them,

Solution: Time multiplex and multi-processor

Note: performance is a required part of the solution!



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-8

Revisit processor architectures

Single Risc like processor
ILP processing: VLIW for DSP, superscalar for general 
purpose
Very successful programming environment: compilers and 
OS.
Multi processor: no clear winning model, suggested to 
move to chapter 11 in Computer Architecture, a 
quantitative approach from Hennessy and Patterson
Vector processing



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-9

What are the solution options

Concurrently execute 50- 500 operations every clock cycle.

Multiple Risc cores, e.g. ARM, MIPS etc.
Multiple VLIW oriented DSPs, e.g TI, Starcore etc
Build a bit oriented FPGA and synthesize everything on top 
of that, including processors cores, packet routing 
networks etc.
Build a fabric of interconnected ALUs (coarse grained 
FPGA)

SoC platforms exploiting the best part for the specific 
application (part).



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-10

Multi processor challenges

Programming language problem: no concurrency
Limited extraction of ILP out of sequential program



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-11

Why can we program processors?

Model of Computation matched to the Model of the 
Architecture

C/C++: single point of control, loop : Memory model, 
branch
CSP (Hoare), Occam(2): Semantics of handshake in 
Hardware: transputer channel
Kahn Process Networks: distributed fifo organization, 
semantics in hardware or software



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-12

Reconfigurable programming challenges

In general 3 problems;
1. Programming a network of ALUs/ bit cells in FPGA
2. Setting up the buffers and partitioning for the network 
3. Dynamic reconfiguration management



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-13

Architecture Design: Y - Chart 

Benchmark driven, based on a Set of Applications

Architecture Applications

Mapping

Performance

Analysis

Performance

Data



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-14

What is an instruction set processor

C/C++, Java programming
Program control translated to branches (most of the time)

for
if
case statements

Single Program counter
Data cache and Instruction cache
Time-multiplex with instructions over ALUs
Load, Store architecture, contains a Register File
Debug with single stepping, breakpoints and register views



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-15

Multi-processors

Multiple instruction set processors:
programmers model?
cache coherence?
granularity at the instruction level required
Instruction Level parallelism limited to 4-5

branch penalty in cycles

Operand routing and memory hierarchy are the cost
load-store instructions 30% of all instructions
L1 cache is half of the processor area
cache works poorly for stream oriented computing



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-16

The Programmability Issue

Extract fine grain Parallelism out C/C++/ Matlab/Java
alias analysis and pointer problem

Extract coarse grain Parallelism out C/C++/ Matlab/Java
process notion

Start with an fine grain Parallel description
Hardware description languages (VHDL/Verilog)
Simulink environment, Signal Flow Graphs

Start with an coarse grain Parallel description
CSP, occam
Kahn Process Networks
System C
...



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-17

Exampe VSP architecture, 12-bit Elements

P P PP

outputs

inputs

ALEs

silo

switch
matrix

program

BEs OEsMEs

ALE
core

ME
core



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-18

VSP1 and VSP2 Layouts



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-19

Example programming VSP with SFG

line delays for
luminance signal

luminance signal

sync signal

chrominance signals

horizontal filter section
vertical filter section

matching line delays

clip function

contour level
control



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-20

Signal Flow Graph Mapping

Retiming, Delay management
Partitioning, which part runs on which IC
Scheduling, and processor allocation

All for statically scheduled multi-rate signal flow graphs
Basic operation translates to basic instruction
explicitly programmed data memory storage
no pointers, no branches
inherent stream semantics 
Used for complete HDTV studio Camera Development, and 
next generation electronic X-ray equipment at Philips



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-21

Chameleon Second generation

Network of interconnected ALUs (close to a VLIW)
Explicit retiming methodology
Programming in Simulink
Buffer programming explicit with hardware specific choices
Benchmark results for video and next generation cell 
phones, base stations etc.



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-22

Fabric
TILE

Fabric
TILE

Fabric
TILE

Fabric
TILE

Fabric
TILE

Fabric
TILE

Pegasus Top Level

Rapid IO
port

RAPID
IO

BLOCK

Rapid IO
port

RAPID
IO

BLOCK

PCIX
IF

BLOCK

DDR
DRAM

Controller

Rapid IO
port

RAPID
IO

BLOCK

Rapid IO
port

RAPID
IO

BLOCK

DDR
DRAM

Parallel
Flash

I/F

Processor Bus
(SB 64-bit 200 MHz)

{ = 1.6 GB/S }

Flash
EPROM

DMA

Fabric Memory Access Bus
(SB 128-bit 200 MHz)

{ = 3.2 GB/S }

PCIX
port

SB
Bridge

High-Speed I/O Bus1
(SB 128-bit 200 MHz)

{ = 3.2 GB/s }

SB
Bridge

SB
Bridge

Viterbi
Decoder

Turbo
Decoder

HIGH-SPEED
MPIO

HS-MPIO
port

High-Speed I/O Bus2
(SB 128-bit 200 MHz)

{ = 3.2 GB/s }

MIPS 64K
5f

eJTAG
port

CacheSerial
Flash

I/F

Serial
Flash

EPROM

SB
Bridge

SB
Bridge

Memory Bus
(SB 128-bit 200 MHz)

{ = 3.2 GB/S }

Low-Speed I/O Bus
(SB 64-bit 100 MHz)

{ = 800 MB/S }

GPIO
BLOCK

GPIO
(64 PINS)

SB
Bridge

USB 2.0
DEV I/F

USB
2.0

host

USB 2.0
HOST I/F

USB
2.0

dev ice

AC97
I/F

AC97
audio port

JTAG
I/F

JTAG
port

SB 128-bit 200 MHz
{ = 3.2 GB/s }

LOW-SPEED
MPIO

LS-MPIO
port

Example Chameleon 6 tile Architecture

CPU



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-23

Tile Architecture

16 DPUs with full Interconnect
4  16KByte Memories
DMA to System
32 Connections to nearest Neighbor



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-24

DPU datapath +control (conceptual)



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-25

DPU datapath Architecture (conceptual)



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-26

Programming the System

Resource Access
DPU Simulink Diagram Untimed
Control Simulink Diagram Untimed
Fabric Memory mapped
CPU C code Linked via eFlow/INTs
Peripherals Memory mapped/DMA
Memories Memory mapped/DMA

Programming Options
Enter control and dataflow in Simulink
C code entry with reference to dataflow kernels in fabric

Kernels are built with Simulink



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-27

Simulink based design entry systems

Integrated entry and simulation environment



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-28

Detail - Scheduling and Mapping

DPU Packing

Retime

Delay DPU Allocation

P+R

Retime

Fold

Delay DPU Allocation

Ctl Gen

depopulate

Bit Gen

DFS

DFS = Data Flow Scheduler



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-29

Reconfigurable programming challenges

In general 3 problems;
1. Programming a network of ALUs/ bit cell in FPGA
2. Setting up the buffers and partitioning for the network 
3. Dynamic reconfiguration management



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-30

Architecture Design: Y - Chart 

Benchmark driven, based on a Set of Applications

Architecture Applications

Mapping

Performance

Analysis

Performance

Data



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-31

Recommendation: Kahn Process Networks

Formal semantics, theory and ‘proof of concepts’ well 
established
very well suited for stream oriented high-performance 
signal processing, including dynamic dataflow.
abstraction from specific Hardware, Operating System and 
device drivers
Extensive prototypes available: UC Berkeley, Caltech, 
Leiden University, Philips Research
Compute result is independent of schedule
C++ stylized industry standard proposed in SystemC 2.0
Satisfies the goals



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-32

Producer-Consumer example (YAPI flavor)

#include "producer.h"
#include <iostream>

Producer::Producer(const Id& n, Out<int>& o) :
Process(n),
out( id("out"), o)

{ }
const char* Producer::type() const
{

return "Producer";
}
void Producer::main()
{

std::cout << "Producer started" << std::endl;

const int n = 1000;

write(out, n);

for (int i=0; i<n; i++)
{

write(out, i);
}

}

#include "consumer.h"
#include <assert.h>
#include <iostream>

Consumer::Consumer(const Id& n, In<int>& i) :
Process(n),
in( id("in"), i)

{ }
const char* Consumer::type() const
{

return "Consumer";
}
void Consumer::main()
{

int n,j;

std::cout << "Consumer started" << std::endl;

read(in, n);

for (int i=0; i<n; i++)
{

read(in, j);
assert(i==j);

}
}



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-33

Mapping Kahn Process Networks

Solve 1,2,3

Input language: Stylized flavors of C++
recommendation: SystemC dataflow proposal

Map one or more processes onto a processor:
generate buffer insertion (sometimes statically determined)
generate schedule for switching between processes on the same 
processor (sometimes statically determined)
generate overall process for manipulation, preferably running on a 
general processor
synthesize run-time schedule or determine run-time scheduling 
technique, potentially using thread schedulers or RTOS or OS 



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-34

New Systems

Understand the application!
On chip memory
Multi processor, programmable and reconfigurable
Power consumption of the complete IC needs to be constant
The PROGRAMMERS view is making the difference

1-4
cpu

I$

input
output

I/O

Memory

Memory

RCF
Serial I/O

timers fixed IP

D$

ReConfigurable 
Fabric



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-35

Programming Reconfigurable Systems

The ONLY interesting architectures are the ones you can 
program/reconfigure.
Logic synthesis for a specific architecture <> programming 
(FPGA problem)
In conventional processors 2/3 of the silicon is in cache 
subsystems:

abstraction for the programmer where the instructions or the data 
are residing
conceptually a shared memory model, even cache coherent multi 
processors systems

It took the DSP world more then 10 years to learn: first 
assembly and MAC, now RISC and VLIW and C compilers



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-36

Reconfigurable embedded systems

SpecInt is irrelevant, EEMBC might be more relevant
Rethink time-multiplexing:

Processor
instruction: compiler
task: OS

Reconfigurable system
compute graph that is statically determined
reconfigure dynamically: runtime support and buffer management.

Extracting parallelism: 
Instruction Level Parallelsim: C is the problem NOT the application
Task level: Wrong QUESTION!



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-37

Summary

Reconfigurable computing has many advantages over ASIC 
and CPU/MPU

Large parallelism with no instruction overhead
Customizable data path size
Flexible (reconfigurable!)

It is still in its infancy
Semantic gap between algorithms and circuits is still a major 
obstacle
Hardware platforms are only now emerging commercially that are 
designed for RC
Mappings are often architecture specific



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-38

Trends

Think Y-chart: FIRST build a mapping environment, then 
ask the question is this a good architecture.
Often ad-hoc matching of the model of computation with 
the model of the architecture -> formalize

Very exciting time:
new tools
new architectures

Reverse the world: silicon is cheap, concurrency and 
communication is the problem, 
New programming paradigms



MPSOC 2003, 7-11 July, Chamonix, France,  K. Vissers 2-39

Selected References

J. Henkel, W. Najjir, F. Vahid, K. Vissers,
New Computing Platforms for Embedded Systems, Full day tutorial at 2002, Design Automation Conference.

Andrew Mihal, Chidamber Kulkarni, Christian Sauer, Kees Vissers, Mathew Moskewicz, Mel Tsai, Niraj Shah, Scott 
Weber, Yujia Jin,Kurt Keutzer, Sharad Malik, A Disciplined Approach to the Development of Architectural Platforms, 
2-12, 19, IEEE Design and Test of Computers, 2002

M. Sima, S. Cotofana, S. Vassiliades, J.T.J. van Eijndhoven, K. Vissers, MPEG Marcroblock Parsing and Pel
Reconstruction on an FPGA-augmented Trimedia Processor, best paper award International Conference on Computer 
Design (ICCD), 2001.

J.T.J. van Eijndhoven, F.W. Sijstermans, K.A. Vissers, E.J.D. Pol, M.J.A. Tromp, P. Struik, R.H.J. Bloks, P. van der
Wolf, A.D. Pimentel, H.P.E. Vranken, Trimedia CPU64 Architecture,  International Conference on Computer Design 
(ICCD),  1999.

F. Sijstermans, E.J. Pol, B. Riemens, K.A. Vissers, S. Rathnam, and G. Slavenburg. Design Space Exploration for 
Future Trimedia CPUs, ICASSP '98. 1998.

B. Kienhuis, E. Deprettere, K.A. Vissers, and P. van der Wolf, An Approach for Quantitative Analysis of Application-
specific Dataflow Architectures. Proceeding of 11th Int. Conference of Applications-specific Systems Architectures 
and Processors (ASAP '97), pp. 338-349. 1997.

K.A. Vissers, G. Essink, P.H.J van Gerwen, P.J.M. Janssen, O. Popp, E. Riddersma, W.J.M Smits, H.J.M. Veendrick. 
Architecture and Programming of Two Generations Video Signal Processors. Journal on Microprocessing and 
Microprogramming . February, 1996.


	Overview
	System on a chip
	Theo Claasen: keynote Dac2000
	Future: The prototype = product
	Problem definition
	Revisit processor architectures
	What are the solution options
	Multi processor challenges
	Why can we program processors?
	Reconfigurable programming challenges
	Architecture Design: Y - Chart
	What is an instruction set processor
	Multi-processors
	The Programmability Issue
	Exampe VSP architecture, 12-bit Elements
	VSP1 and VSP2 Layouts
	Example programming VSP with SFG
	Signal Flow Graph Mapping
	Chameleon Second generation
	Example Chameleon 6 tile Architecture
	Tile Architecture
	DPU datapath +control (conceptual)
	DPU datapath Architecture (conceptual)
	Programming the System
	Simulink based design entry systems
	Detail - Scheduling and Mapping
	Reconfigurable programming challenges
	Architecture Design: Y - Chart
	Recommendation: Kahn Process Networks
	Producer-Consumer example (YAPI flavor)
	Mapping Kahn Process Networks
	New Systems
	Programming Reconfigurable Systems
	Reconfigurable embedded systems
	Summary
	Trends
	Selected References

