Reconfigurable Systems in terms
of Computer Architectures

Kees A. Vissers

Research Fellow, UC Berkeley
vissers@ieee.org
www.eecs.berkeley.edu/~vissers

July 10. 2003

b, CHAM ELEON

L

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers

2-2

Overview
B

= Introduction

= Video Signal Processors, Network of Alus
= Dynamic Reconfiguration

= Conclusions

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers

2-3

System on a chip
|

Silicon Technology is providing the opportunity to
add new functionality and integrate several functions
and allow more programmable/reconfigurable systems.

First System Second System __time N

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-4

m Theo Claasen: keynote Dac2000

Rapid silicon prototyping
Design cycle benefits

Conventional Design Procedgs&time rigBf)
[N 0 St
Release

RSP Design Process

Production
Release

- HW Development and Validation - Silicon Fabrication

- Placement, Routing & Physical Verificati SW Development and Validation

® Faster chip development
- More than 50% total design cycle reduction
- True HW / SW cdevelopment

® Higher probability ofdsixrshiccess

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers

erDAC 2000-14

PS - Theo Claas

2-5

m Future: The prototype = product

= [rade-off between
« HW/SW trade-off: Processor and reconfigurable fabric
= Granularity issue: fine grain processing ILP, or Task level
= bit oriented — word oriented
» distributed on chip memory

= Large number of architectural choices:
= Which is ‘the right one’ for a particular application domain?

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-6

Problem definition
B

= Perform processing on a stream of data
= Sampling rates in the order of 100KHz to 100MHz
= per sample 1000 — 100,000 operations

Perform 1019-1011 operations/sec, like add, multiply etc.

Take a 200MHz Alu, still need 50-500 of them,
Solution: Time multiplex and multi-processor

Note: performance is a required part of the solution!

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers

2-7

u Revisit processor architectures

= Single Risc like processor

= ILP processing: VLIW for DSP, superscalar for general
purpose

= Very successful programming environment: compilers and
OS.

= Multi processor: no clear winning model, suggested to
move to chapter 11 in Computer Architecture, a
quantitative approach from Hennessy and Patterson

= Vector processing

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-8

m What are the solution options

Concurrently execute 50- 500 operations every clock cycle.

= Mu
= Mu
= Bui

tiple Risc cores, e.g. ARM, MIPS etc.
tiple VLIW oriented DSPs, e.g TI, Starcore etc

d a bit oriented FPGA and synthesize everything on top

of that, including processors cores, packet routing
networks etc.

= Build a fabric of interconnected ALUs (coarse grained
FPGA)

SoC platforms exploiting the best part for the specific
application (part).

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-9

m Multi processor challenges

= Programming language problem: no concurrency
= Limited extraction of ILP out of sequential program

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-10

u Why can we program processors?

Model of Computation matched to the Model of the
Architecture

= C/C++: single point of control, loop : Memory model,
branch

= CSP (Hoare), Occam(2): Semantics of handshake in
Hardware: transputer channel

= Kahn Process Networks: distributed fifo organization,
semantics in hardware or software

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-11

m Reconfigurable programming challenges

In general 3 problems;

1. Programming a network of ALUs/ bit cells in FPGA

2. Setting up the buffers and partitioning for the network
5. Dynamic reconfiguration management

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-12

Architecture Design: Y - Chart
|

Benchmark driven, based on a Set of Applications

[Performance}
Data

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-13

u What is an instruction set processor

= C/C++, Java programming

= Program control translated to branches (most of the time)
= for

s if
= Case statements
= Single Program counter
= Data cache and Instruction cache
= Time-multiplex with instructions over ALUs
= Load, Store architecture, contains a Register File

= Debug with single stepping, breakpoints and register views

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-14

m Multi-processors

= Multiple instruction set processors:

programmers model?

cache coherence?

granularity at the instruction level required

Instruction Level parallelism limited to 4-5
= branch penalty in cycles

Operand routing and memory hierarchy are the cost
= load-store instructions 30% of all instructions
= L1 cache is half of the processor area
= cache works poorly for stream oriented computing

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers

2-15

m The Programmability Issue

= Extract fine grain Parallelism out C/C++/ Matlab/Java
= alias analysis and pointer problem
= Extract coarse grain Parallelism out C/C++/ Matlab/Java
= process notion
= Start with an fine grain Parallel description
=« Hardware description languages (VHDL/Verilog)
= Simulink environment, Signal Flow Graphs
= Start with an coarse grain Parallel description
= CSP, occam
= Kahn Process Networks
= System C

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-16

m Exampe VSP architecture, 12-bit Elements

inputs ——
K -— E switch
K/ — matrix
e T T T T
: : : :
| ALEs | MEs | BEs ' | OEs
| | |/ |/
| il vy oy Iil | y
~{HH] ~{HH] - Uy sio
| |
- [ALE [ME | |
| core | core | |
2 |- e [el e
| | | |
\ \ \ \

|
! ! ! !
i Bl Bl Eeb program
v

. _/
@ j j j j j outputs

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-17

F VSP1 and VSP2 Layouts

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

|mﬁﬁmﬂlwlﬂwllmﬁlmllm1|mﬁ

SHS88388m 0BEE
mmmteyinmal L1 18 11 L _...._
m==Rd
B3
£
1
=1
B
=%

llul..n.l LR R o

AR AT AR AR AR A A AT A A
R e Y
SE U g
S g A :
SH TV
=l = =i == :
E

- =
Hﬁ _““’"-L m! = o U 21 ul""-!

S . .

- [
=
=t
s
B
|
B
e
i
[=T,
En-
| =il
B
a,
B

aaaaaag PR LM T T T

REBARS u DESHENE

‘Somih o hiakakab sadahkdE n ‘Badaassa s m‘ an o ni """""" “"- "'""" 2 - "'"'""""-"“ "“
Figure 3: Layouts of VSP1 in 1.2 CMOS and VSP2 in 0.8 CMOS

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-18

line delays for

luminance signal

m Example programming VSP with SFG

clip function

luminance signal /2]
B,

\ vertical filter section

2
horizontal filter section

contour level
control

2

2

=

sync signal

z z
L € _Heoe
6 1 1

]
g
2

chrominance signals

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers

2-19

B Signal Flow Graph Mapping

= Retiming, Delay management
= Partitioning, which part runs on which IC
= Scheduling, and processor allocation

= All for statically scheduled multi-rate signal flow graphs
= Basic operation translates to basic instruction

= explicitly programmed data memory storage

= NO pointers, no branches

= inherent stream semantics

= Used for complete HDTV studio Camera Development, and
next generation electronic X-ray equipment at Philips

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-20

n Chameleon Second generation

= Network of interconnected ALUs (close to a VLIW)

= Explicit retiming methodology

= Programming in Simulink

= Buffer programming explicit with hardware specific choices

= Benchmark results for video and next generation cell
phones, base stations etc.

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-21

Example Chameleon

Rapid 10
port

High-Speed I/0O Bus1 t

PCIX
port

PCIX

BLOCK

Rapid 10
port

RAPID

BLOCK

SB 128-bit 200 MHz

DDR
DRAM
Controller

¢ & :
(SB 128-bit 200 MHz) | Bridgd =] {=32GBI/s}
{=32GBis} t t t 1
Viterbi Fabric Fabric Fabric
Decoder TILE TILE TILE
Fabric MemoryAccess Bus 1\ =
(SB 128-bit 200 MHz) | Bridg
{=32GBIS} 1:
Bridg
Turbo Fabric Fabric Fabric
Decoder TILE TILE LE

High-Speed 1/O Bus2

(SB 128-bit 200 MHz) > sragd €
{=32GBIs} t ¢ 1
RAPID RAPID
10 HIGH-SPEED 0
BLOCK MPIO BLOCK
Rapid 10 HS-MPIO Rapid 10
port port port

| it]
H 1
']
H :
']
H :
']
H :
i DDR |
' '
‘_’i DRAM :
' '
|]
H :
']
H :
']
H :
A :
Serial eJTAG
Flash port
EPROM Flash

Pt

EPROM 1

6 tile Architecture

Parallel Serial
Flash Flash
F F

CPU

t ¢

H

Processor Bus
(SB 64-bit 200 MHz)
{=1.6GB/S}

Low-Speed 1/O Bus

(SB 64-bit 100 MHz)

t t 1 t t {=800MB/S}
USB 2.0 USB 2.0 AC97 JTAG GPIo LOW-SPEED
DEVIF HOST I/H F F BLOCK MPO
usB usB AC97 JTAG GPIO LS-MPIO
2.0 2.0 audio port port (64 PINS) port
host device

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers

2-22

l Tile Architecture

= 16 DPUs with full Interconnect

= 4 16KByte Memories

= DMA to System

= 32 Connections to nearest Neighbor

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-23

DPU datapath +control (conceptual)

Register Access Bis
Theriem: Row Control Unit g i Row Configuration Unit
LUT Based State 2 |8 _flmstrution Metiy
& w T
Encoded State v ; [
o
Data Path Unt i : A TR
MRS
etz Lare o
LR } T i
ﬂ. B2 gL P
113 T — : ul
Em.—-'_rr&; oA
HH R et T | Pt
_:i,‘]_E’:‘ F i ! g : _:D‘E’“M nh}gngug— TP
i) =
WINTN=T) L ‘ :ﬂ“: ﬂ L= T
Tt lare : L
R i = i ofw e [~
gE= = ‘ ; -
T — L —HT)
) L
ETE o ; i =
=9 : =
0] i
HR — as R
H-H | ot zier e | S| P
H } om
EMJ

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-24

m DPU datapath Architecture (conceptual)

Data Path Unit

/

i

/

amu

I
Data Lane |
I
[l
R o
L Rse.gismr.al
=M 1
e} !..--.-
|
DFUDamEy
Hice 0 i
Data Lane |
I
P} -
H R 1 H
1 | Fiegister Fib !
!
=M i
et !...
1
1
DFUDseBux
[~ Hwee 1
1
Data Lane 1
[REE S
TR by |
1 1 Fieg ister Fib
=N
Tile Dam Eu s
1
Data Lane ¢
a5

\I T OPU
Omj Dt Bus

D=ty Bus

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers

Programming the System
.

s Resource Access

= DPU Simulink Diagram Untimed
= Control Simulink Diagram Untimed
= Fabric Memory mapped

= CPU C code Linked via eFlow/INTs

= Peripherals Memory mapped/DMA

= Memories Memory mapped/DMA

= Programming Options
= Enter control and dataflow in Simulink

= C code entry with reference to dataflow kernels in fabric
= Kernels are built with Simulink

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-26

n Simulink based design entry systems

= Integrated entry and simulation environment

File Edit View Simulation Format Tools Help

D& +BR|DC hEE&|

mymodel

(5]

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-27

m Detail - Scheduling and Mapping

Delay DPU Allocation

DPU Packing
A 4 A 4
Retime Retime
DFS l Fold

Delay DPU Allocation

P -

P

/depopulate

P+R

DFS = Data Flow Scheduler

Ctl Gen

l

Bit Gen

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers

2-28

m Reconfigurable programming challenges

In general 3 problems;

1. Programming a network of ALUs/ bit cell in FPGA

2. Setting up the buffers and partitioning for the network
5. Dynamic reconfiguration management

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-29

Architecture Design: Y - Chart
|

Benchmark driven, based on a Set of Applications

[Performance}
Data

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-30

. Recommendation: Kahn Process Networks

Formal semantics, theory and ‘proof of concepts’ well
established

very well suited for stream oriented high-performance
signal processing, including dynamic dataflow.

abstraction from specific Hardware, Operating System and
device drivers

Extensive prototypes available: UC Berkeley, Caltech,
Leiden University, Philips Research

Compute result is independent of schedule
C++ stylized industry standard proposed in SystemC 2.0
Satisfies the goals

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-31

m Producer-Consumer example (YAPI flavor)

Producer
#include "producer.h” #include "consumer.h"
#include <iostream> #include <assert.h>
Producer::Producer(const Id& n, Out<int>& 0) : #include <iostream>
Procgss(n), Consumer::Consumer(const Id& n, In<int>& i) :
out(id("out"), o) Process(n),
{} in(id("in"), i)
const char* Producer::type() const {}
{ const char* Consumer::type() const
return "Producer"; {
by return "Consumer";
void Producer::main() I
{ void Consumer::main()
std::cout << "Producer started" << std::endl; {
int n,j;
const int n = 1000;
std::cout << "Consumer started" << std::endl;
write(out, n);
read(in, n);
for (int i=0; i<n; i++)
{ for (int i=0; i<n; i++)
write(out, i); {
b read(in, j);
} assert(i==j);

}
}
MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-32

u Mapping Kahn Process Networks

Solve 1,2,3

= Input language: Stylized flavors of C++
= recommendation: SystemC dataflow proposal

= Map one or more processes onto a processor:
= generate buffer insertion (sometimes statically determined)

= generate schedule for switching between processes on the same
processor (sometimes statically determined)

= generate overall process for manipulation, preferably running on a
general processor

= synthesize run-time schedule or determine run-time scheduling
technique, potentially using thread schedulers or RTOS or OS

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-33

New Systems
B

= Understand the application!

= On chip memory

= Multi processor, programmable and reconfigurable
= Power consumption of the complete IC needs to be constant
= The PROGRAMMERS view is making the difference

l

|

MPSOC 2003

Memory

Input

=1 Serial I/O

output

-H RCF

<«

timers 1 fixed IP

1-4

— Memory

D$—1/O

cpu

-

T 111

™ ReConfigurable

Fabric

2-34

m Programming Reconfigurable Systems

The ONLY interesting architectures are the ones you can
program/reconfigure.

Logic synthesis for a specific architecture <> programming
(FPGA problem)

In conventional processors 2/3 of the silicon is in cache
subsystems:

= abstraction for the programmer where the instructions or the data
are residing

= conceptually a shared memory model, even cache coherent multi
processors systems

It took the DSP world more then 10 years to learn: first
assembly and MAC, now RISC and VLIW and C compilers

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-35

m Reconfigurable embedded systems

= Speclnt is irrelevant, EEMBC might be more relevant

= Rethink time-multiplexing:

= Processor

= instruction: compiler
= task: OS

= Reconfigurable system
= compute graph that is statically determined
= reconfigure dynamically: runtime support and buffer management.
= Extracting parallelism:
= Instruction Level Parallelsim: C is the problem NOT the application
= Task level: Wrong QUESTION!

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-36

Summar
. Y

= Reconfigurable computing has many advantages over ASIC
and CPU/MPU

=« Large parallelism with no instruction overhead
= Customizable data path size
= Flexible (reconfigurable!)

= Itis still in its infancy

= Semantic gap between algorithms and circuits is still a major
obstacle

=« Hardware platforms are only now emerging commercially that are
designed for RC

= Mappings are often architecture specific

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-37

Trends
B

= Think Y-chart: FIRST build a mapping environment, then
ask the question is this a good architecture.

= Often ad-hoc matching of the model of computation with
the model of the architecture -> formalize

= Very exciting time:
= hew tools
= hew architectures

= Reverse the world: silicon is cheap, concurrency and
communication is the problem,

= New programming paradigms

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-38

. Selected References

= J. Henkel, W. Najjir, F. Vahid, K. Vissers,
New Computing Platforms for Embedded Systems, Full day tutorial at 2002, Design Automation Conference.

= Andrew Mihal, Chidamber Kulkarni, Christian Sauer, Kees Vissers, Mathew Moskewicz, Mel Tsai, Niraj Shah, Scott
Weber, Yujia Jin,Kurt Keutzer, Sharad Malik, A Disciplined Approach to the Development of Architectural Platforms,
2-12, 19, IEEE Design and Test of Computers, 2002

n M. Sima, S. Cotofana, S. Vassiliades, J.T.]. van Eijndhoven, K. Vissers, MPEG Marcroblock Parsing and Pe/
Reconstruction on an FPGA-augmented Trimedia Processor, best paper award International Conference on Computer
Design (ICCD), 2001.

= 1.T.J. van Eijndhoven, F.W. Sijstermans, K.A. Vissers, E.J.D. Pol, M.J.A. Tromp, P. Struik, R.H.]J. Bloks, P. van der

Wolf, A.D. Pimentel, H.P.E. Vranken, 7rimedia CPU64 Architecture, International Conference on Computer Design
(ICCD), 1999.

. F. Sijstermans, E.J. Pol, B. Riemens, K.A. Vissers, S. Rathnam, and G. Slavenburg. Design Space Exploration for
Future Trimedia CPUs, ICASSP '98. 1998.

. B. Kienhuis, E. Deprettere, K.A. Vissers, and P. van der Wolf, An Approach for Quantitative Analysis of Application-
specific Dataflow Architectures. Proceeding of 11th Int. Conference of Applications-specific Systems Architectures
and Processors (ASAP '97), pp. 338-349. 1997.

n K.A. Vissers, G. Essink, P.H.J van Gerwen, P.]J.M. Janssen, O. Popp, E. Riddersma, W.J.M Smits, H.]J.M. Veendrick.
Architecture and Programming of Two Generations Video Signal Processors. Journal on Microprocessing and
Microprogramming . February, 1996.

MPSOC 2003, 7-11 July, Chamonix, France, K. Vissers 2-39

	Overview
	System on a chip
	Theo Claasen: keynote Dac2000
	Future: The prototype = product
	Problem definition
	Revisit processor architectures
	What are the solution options
	Multi processor challenges
	Why can we program processors?
	Reconfigurable programming challenges
	Architecture Design: Y - Chart
	What is an instruction set processor
	Multi-processors
	The Programmability Issue
	Exampe VSP architecture, 12-bit Elements
	VSP1 and VSP2 Layouts
	Example programming VSP with SFG
	Signal Flow Graph Mapping
	Chameleon Second generation
	Example Chameleon 6 tile Architecture
	Tile Architecture
	DPU datapath +control (conceptual)
	DPU datapath Architecture (conceptual)
	Programming the System
	Simulink based design entry systems
	Detail - Scheduling and Mapping
	Reconfigurable programming challenges
	Architecture Design: Y - Chart
	Recommendation: Kahn Process Networks
	Producer-Consumer example (YAPI flavor)
	Mapping Kahn Process Networks
	New Systems
	Programming Reconfigurable Systems
	Reconfigurable embedded systems
	Summary
	Trends
	Selected References

