Application Specific Processors in Industry SoC Designs

MPSoC '04

Steffen Buch

ntineon

Senior Director Advanced Systems & Circuits

Never stop thinking.

Infineon	Agenda
	Motivation
	Example 1: Filter Development Platform – ASMD Example 2: Network Processor Core – PP32
Steffen Buch Advanced Systems & Circuits	Conclusions
MPSoC'04 06.07.2004 Page 3	
Infineon	What Means Application Specific Processor ?
	Application Specific Control
	Application Specific Interfaces
	Application Specific Data Path
to Pth	Assembler C Compiler Programmable Targeted Reconfigurable Processors

Steffen Buch Advanced Systems & Circuits

MPSoC'04

06.07.2004 Page 4 Application Specific Processors cover a broad range of different flavors

Different point of views from the hardware and the software world open up new possibilities

Infineon **Performance Driver: Shannon's Law Algorithmic Complexity** 1000000-(Shannon's Law) 3G 100000-Processor Performance (Moore's Law) 100000 10000 1000 100 10 Steffen Buch **Battery Capacity** Advanced 1GSystems & Circuits 1 MPSoC'04 06.07.2004 Page 6

Signal Processing for an UMTS Receiver (Air Interface)

Infineon

Steffen Buch Advanced Systems & Circuits

MPSoC'04

06.07.2004 Page 8

Example of processing requirements @ 384 kbps :

Digital Filtering (RRC, channelization)	~3600 MIPS
Searcher (frame, slot, delay path estimation)	~1500 MIPS
RAKE receiver	~650 MIPS
Maximum-ratio combining (MRC)	~24 MIPS
Channel estimation	~12 MIPS
AGC, AFC	~10 MIPS
Deinterleaving, rate matching	~14 MIPS
Turbo-decoding	~52 MIPS
Total	~5860 MIPS

UMTS requires intensive layer 1 processing compared to e.g. GSM

Source: Dr. J. Hausner, VP Concept Engineering, Secure Mobile Solutions, Infineon

06.07.2004 Page 12

Source: International SEMATECH

Note: Cost called out are for 8M gate PDA in 2001

4 Drivers for Application Specific Processors

✓ Performance Requirements

- throughput
- power efficiency
- code & data density (memory requirements)

Design Efficiency

- platform approach: easy adaptability to different applications in same domain
- predefined control & pipeline structure simplifies design
- Product Programmability
 - late/in-field changes
 - product derivatives
 - bug fixing

Drivers for Programmability in SOC

Steffen Buch Advanced Systems & Circuits

MPSoC'04

06.07.2004 Page 13

Infineon

4 Drivers for Application Specific Processors

✓ Performance Requirements

- throughput
- power efficiency
- code & data density (memory requirements)

Design Efficiency

- platform approach: easy adaptability to different applications in same domain
- predefined control & pipeline structure simplifies design
- Product Programmability
 - late/in-field changes
 - product derivatives
 - bug fixing

IP Cost

- ASIP design allows quick and cheap IP development

IP Cost Can Eat-Up Your Gross Margin

- Extensive IP licensing leads to high up-front & royalty payments
- Gross margins are lowered
- IDMs or design houses can not be successful by <u>only</u> integrating licensed IP

Example:

!!! France Telecom daughter company demands about 1\$!!!!!! per chip from 3G chip makers for Turbo Coding!!!

Steffen Buch Advanced Systems & Circuits

MPSoC'04

06.07.2004 Page 15

Infineon

Steffen Buch Advanced Systems & Circuits

MPSoC'04

Infineon	Con's for Application Specific Processors
	Design Effort (Tools + Core)
	- Requires new methodologies
tie	
Steffen Buch Advanced Systems & Circuits	
MPSoC'04	
06.07.2004	
Page 17	

- Partitioning and verification of complete system in multi-processor architectures are challenging
- Tendency of hardware designers: Use multiple (different) processors for efficiency reasons
- Tendency of software designers: Use single core solutions because that simplifies software/firmware development
- Generalized transparent programming of embedded MPSoCs would be the perfect solution BUT optimization problem is not solvable

Constrain yourself to typical application scenarios

Two typical scenarios

Steffen Buch Advanced

MPSoC'04

Systems & Circuits

- Two core designs
- One master core + flexible coprocessors

Motivation

Example 1: Filter Development Platform – ASMD

Example 2: Network Processor Core – PP32

Conclusion

Steffen Buch Advanced Systems & Circuits

MPSoC'04

Design Goal: Expert System for Digital Filter Design

ASIP core + HW accelerators + glue logic for digital part in mixed-signal front-ends (e.g. audio codecs, transceivers)

Requirements:

- High data rates with limited cycle budget and high power sensitivity
- Typical cycle budget is 50 to 500 cycles per sample
 - Typical clock speed is about 100 MHz
 - Typical tasks are multi-rate interpolation/decimation, filtering, coding and mixing
- Short design time, quick adaptability

Application Specific Multi-Rate DSP - ASMD

Application Specific Control

Application Specific Interfaces

Application Specific Data Path

Assembler

PE ASMD Ble Reconfigurable State Machines C Compiler Targeted Processors

Major driver for ASIP development

- design efficiency
- May be not even a processor but a flexible state machine

Steffen Buch Advanced Systems & Circuits

Infineon

MPSoC'04

06.07.2004 Page 29

Infineon

Steffen Buch

Advanced Systems & Circuits

MPSoC'04

Assembler Syntax and Instruction Set

Infineon

Page 34

Expert System for digital filter front-ends

- 1. Algorithm development in Matlab environment
- 2. Configure and program ASMD using software macros

Design Goal: Efficient Core for Framing Applications

Layer 1 and 2 packet processing in communication systems that require medium to high data throughput and flexibility.

Requirements:

Infineon

Steffen Buch

Advanced Systems & Circuits

MPSoC'04

06.07.2004 Page 43

Infineon

- Adaptability to different and/or changing protocols
- Optimized for hardware software interaction
- Strong support of data interfaces
 - Special features for protocol processing
- Predictability of execution time

32 Bit Protocol Processor – PP32

Application Specific Control

Application Specific Interfaces

Application Specific Data Path

Assembler Programmable Reconfigurable State Machines

Major driver for ASIP development

- performance requirements
- product programmability
- IP cost

06.07.2004 Page 44

Steffen Buch

Advanced Systems & Circuits

MPSoC'04

Principal Receiver Partitioning

Infineon

PP32 Instruction Set Performance Comparison PP32 vs. MIPS M4K

The worst case example of the 10 test scenarios selected from L2 switching:

PROCESSING()	
{	

read packet start addresses build the CAME keyword read packet end addresses launch the CAME look up wait for CAME results read the results find what for a case we have edit the packet according to this case : strip VLAN edit and send the ATM header add LLC header edit AAL5 trailer send the rest payload write cmd to the FIFO control }

- Higher clock speed
- Smaller core size
- No license fees & royalties

Steffen Buch

Systems & Circuits

06.07.2004 Page 49

Advanced

MPSoC'04

PP32 Implementation

- Fully developed in the Infineon design flow (inway)
- Fully synthesizable (standard-cells) design
- Fully synchronous interfaces

Technology	0.13 μm
Design Package	c11n v2.1.2
Operation Condition	worst case (1.35 V, 125 °C)
Library	cstarlib_reg_1v5
Synthesis result	Frequency: 303 MHz in Worst Case (c11n RVt 1.35V 125C)
	Area : 0.37 mm ²
Deliverables	VHDL model,
	Synopsys DC synthesis scripts
Tools	Simulator, Debugger, Assembler,
	Linker, C-Compiler

Steffen Buch

Advanced Systems & Circuits

MPSoC'04

Conclusions

ASIPs are the next revolution in SoC design !

Further improvements of ASIP methodologies and business models

Research and solutions for simple embedded MPSoC programming

<image>

We create Semiconductor Solutions, enabling the Technology Lifestyle of the Individual in the 21st Century.

Steffen Buch Advanced Systems & Circuits

MPSoC'04