

Giovanni De Micheli CSL - Stanford University

- Introduction to dependable design
- Component redundancy
- Reliable interconnect
- Robust design
- Summary and conclusions

Dependable design where do we need it ?

• Traditional applications

- Long-life applications (e.g., unmanned and manned space missions)
- Life-critical, short-term applications (e.g., aircraft engine control, fly-by-wire)
- Defense applications (e.g., aircraft, guidance & control)
- Nuclear industry
- Telecommunications
- Newer critical-computation applications
 - Health industry
 - Automotive industry
 - Industrial control systems and production lines
 - Banking, reservations, commerce
- Very large-scale scientific computing
 - The new 10 Teraflop machine (IBM)

De Micheli

4

Defining the problems...

- Failure rate:
 - Assuming a unit works correctly in [0,t], the conditional probability ?(t) that a unit fails in [t, t +? t]
 - Typically the failure ? rate depends on
 - Temperature
 - Time (burn-in and aging)
 - Environmental exposure - Soft errors, EMI
 - Often the component failure rate is assumed to be constant for simplicity

9

De Micheli

Reliability of complex systems

- A system is a connection of components
- System reliability depends on the topology
 - Series/parallel configurations
 - N out of K configurations
 - General topologies
- Common mode failures
 - Failure mode that affects all components
 - Examples:
 - Failure of voltage regulator for SoC
 - · Failure of scheduler to process exception routines

13

De Micheli

Providing component redundancy

- Component redundancy for enhanced reliability
 - Energy consumption penalty may be severe
- Power-managed standby components
 - Provide for temporary/permanent back-up
 - Provide for load and stress sharing
- Power management and reliability are intertwined:
 - PM allows reasonable use of redundancy on chip
 - Failure rates depend on effect of PM on components
- A programmable and flexible interconnection means is required

De Micheli

