
IBM Labs in Haifa © 2004 IBM Corporation

Quality Improvement Methods for 
System-level Stimuli Generation

Roy Emek (emek@il.ibm.com)
Simulation-based Verification Technologies



IBM Labs in Haifa

� © 2004 IBM Corporation

Simulation-based functional verification

� Verification: Show that a design (implementation) conforms to its 
specification

� The main method today: Simulation

Specification Implementation=?

Stimuli (test-case)

Expected behavior Actual behavior=?

Stimuli (test-case)Stimuli 
Generator



IBM Labs in Haifa

� © 2004 IBM Corporation

Overview

� Systems and system verification
� The concept of Testing Knowledge
� Testing Knowledge mechanisms: three examples
� Testing Knowledge as a component in a verification methodology
� Experience

� Functional coverage
� A sample bug

� Implementation: constraints in Constraint Satisfaction 
Problems

� I too added a few slides …



IBM Labs in Haifa

� © 2004 IBM Corporation

Systems and system verification

� A system: 
� A configuration of various components

� E.g., processors, memories, bridges, encoders, interconnect, …

� Capable of interacting with each other and with the outside world
� E.g., DMA of 1K bytes, decoding three MPEG frames, …

� System verification: Verifying the integration of pre-verified components
� Challenges

� Large designs
� Complex specifications
� Limited resources, specifically tight schedules
� Remoteness (physical, in time) from the actual logic designers

� “Verification consumes ~70% of the design effort”

I’m speaking about HW



IBM Labs in Haifa

� © 2004 IBM Corporation

A major solution direction: reuse

System Bus

I/O Bus

BridgeMem1 Mem2

uP DMA IP IP

USB PCI-ex

Protocol 
checkers

Bus monitor

USB PCI-ex

Bus Functional 
Models (BFMs)

TK represents another form of reuse



IBM Labs in Haifa

� © 2004 IBM Corporation

The concept of system-level testing knowledge

� Testing knowledge (TK): A set of mechanisms that aim at improving 
test-case quality

� Capitalize on recurring architectural concepts, such as: 
� Caches
� Address translation and translation tables
� Multiple instances of the same component type

� The basic mechanism: non-uniform 
random choice
� Bias towards ‘interesting’ areas

� Affects all generated test cases
� But can be controlled by the 

users of the stimuli generator

Space of valid tests

‘interesting’ areas



IBM Labs in Haifa

� © 2004 IBM Corporation

X-Gen

� X-Gen: a system-level test-case generator
� An in-house tool
� Used for the verification of several high-end systems in 

IBM

� The ideas presented here were developed during our work 
on X-Gen
� Influenced by ideas from the processor verification 

domain
� I.e. Genesys



IBM Labs in Haifa

� © 2004 IBM Corporation

Overview

� Systems and system verification
� The concept of Testing Knowledge
� Testing Knowledge mechanisms: three examples
� Testing Knowledge as a component in a verification methodology
� Experience

� Functional coverage
� A sample bug

� Implementation note: Constraint Satisfaction Problems



IBM Labs in Haifa

� © 2004 IBM Corporation

Testing knowledge Example #1: Resource contention

� System level � multiple components � parallelism
� Resource contention is a frequent cause of system-level bugs

� Example: cache coherency and consistency
� Resource collision TK mechanism

� Maintain a queue of recently accessed resources
� With probability X, use one of the resources in the queue

� System-address is a typical system-level resource identifier
� Resource contention � address collision

uP 0 uP 1 DMA



IBM Labs in Haifa

	
 © 2004 IBM Corporation

Testing knowledge Example #2: Address translation

� Address translation is a means for decoupling
� Processors: virtual vs. physical
� System address space vs. I/O address space
� High-end interconnect

� ‘Placement’ events: relate to pages, segments, etc.

Boundary

Crossing

Vicinity

Found a complex 
bug in a 

high-end design



IBM Labs in Haifa

		 © 2004 IBM Corporation

Testing knowledge as a form of reuse

� A test template describes a scenario / verification task
� Example: 100 x transaction-A, then 50 x transaction B

� The same TK is reused across all the test templates
� Thus reducing the number of test templates

� Similar testing knowledge can be used across multiple systems

Stimuli
generator

Test template Test cases

TK Reused in a follow-on design



IBM Labs in Haifa

	� © 2004 IBM Corporation

A foreground / background methodology

Foreground: Main scenario 
Defined by the test template

Bug

Background: testing knowledge
Intelligent random noise
Can be directed by the test-template

Example: a scenario that requires 
cache-misses would reduce the 
probability of address-collision



IBM Labs in Haifa

	� © 2004 IBM Corporation

Usage experience – Power4+ based system

63.80%74.28%Coverage Model #3

26.88%43.84%Coverage Model #2

59.17%61.14%Coverage Model #4

37.10%40.57%Coverage Model #1

x4.8x1Simulation cycles 
(normalized)

7168737No. of request files*

Previous toolTK based tool: 
X-Gen

Category

* Rough measurement of the human effort



IBM Labs in Haifa

	� © 2004 IBM Corporation

Implementation note: Constraint Satisfaction Problems (CSP)

� CSP definition
�A set of variables
�A domain of valid values for each 
variable
�Constraints define valid 
combinations of values

� The basis for modern test-case 
generation
�Constraints impose validity, user 
requests, aim towards quality
�A test-case is a random solution

� Testing knowledge mechanisms are 
implemented as soft constraints
�Reused for multiple systems

System address
Length

Initiating Proc.

Target Mem.

Virtual address

Instruction: ld / st

Placement

Interconnect

User request



IBM Labs in Haifa

	� © 2004 IBM Corporation

Summary

� Testing knowledge: Directing stimuli generation to ‘interesting’ areas
� Expanding coverage 
� Increasing the chances of hitting a bug

� Capitalize on recurring architectural concepts
� Examples: resource contention, placement, interconnect

� Reduces the cost of implementing a verification plan
� Reuse of knowledge between test templates
� Reuse of knowledge (and technology) between different systems

� And at the same time influences the verification plan



IBM Labs in Haifa

	� © 2004 IBM Corporation

Thank You


