
STMicroelectronics

Advanced System Technology

Multi-Level Computing Architectures
(MLCA)

Faraydon Karim
ST US-Fellow

Emerging Architectures

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

2

Outline

MLCA
• What’s the problem
• Traditional solutions: VLIW, superscalar, multiscalar,

Multiprocessor
Vision, roadmap

• What MLCA enables, in different fields
Status

• Tools we have
• Current research and cooperations
• Future work (short term)

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

3

“The Key To Success”

“The key to success in parallel processing on a chip will
be the ability to map computational algorithms efficiently
on to an array of resources, and hide the complexity from
both programmer and user. The company that can do that
has a shot at being the next Intel.”

-- The Economist, March 13th 2003

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

4

System-Level Design Needs

Jim Brodie, Manager, Performance Excellence, Motorola Global Software Group
at CODES+ISSS’03 SLD tools panel

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

5

System-Level Programming Model
“The mismatch of concerns between the application and the target architecture results in an
implementation gap. To facilitate bridging this gap we introduce an intermediate layer called a
"Programming Model," which presents an abstraction of the underlying architecture while still
providing a natural way of describing applications.”

Programming Model
• raises abstraction of architecture
• facilitates mapping of Application Model

source: http://www.gigascale.org/mescal/progmodel.html
http://www.gigascale.org/pubs/356.html

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

6

Our Goal

Streamline the design of modern heterogeneous
multi-processor systems by providing

• An Architectural Framework,
• A Programming Model,
• Mapping Methodology and Tools

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

7

Multi-Level Computing Architectures

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

8

MLCA in general

Control Unit

K-Tables
Register

File

Control Layer

Communication
Layer

Exec#1 Exec#2 Exec #nData Layer

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

9

Micro- and Macro-Architecture Analogy

Processor
Micro Architecture

Fetch / Decode

ALU

GPR

Instruction
Queue

ALU FP

ILP
(Instruction-Level Parallelism)

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

10

Micro- and Macro-Architecture Analogy

Processor
Micro Architecture

Hyperprocessor
Macro Architecture

Fetch / Decode Control Processor

ALU

GPR

Instruction
Queue

ALU FP

Instruction
Queue

URF

PEPE PE

TLP
(Task-Level Parallelism)

ILP
(Instruction-Level Parallelism)

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

11

Hyperprocessor

Fetch
Decode
Dispatch

Control Processor

URF

PE PE PEProcessing Elements

PE = Processor,
FPGA
Hardware

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

12

Control Unit URF

Execution Units

(Hypercomputer)

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

13

Layered Programming

main()

{

…

while (GetFrame(buf1)) {

QAM(buf1, buf2, buf3);

CIC_I(buf2, buf4);

CIC_Q(buf3, buf5);

…

}

PU

Control Processor

Task
Dispatcher URF

PU

Task bodies

Top-level CDFG
+ scheduling

void

QAM(int *ptr1, …)

{

…

}

void

CIC_I(int *ptr1, …)

{

…

}

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

14

Sample C Program
C (partitioned manually)

GetFrame

QAM

CIC_QCIC_I

Demod

Filter

Decimate

Copy

Output

Config

FalseTrue

Control flow

END

Fail

Init

#define N 1024

bool doFilter;

int32 buf1[N], buf2[N], … ,buf8[N];

doFilter = Config();

while (GetFrame(buf1)) {

QAM(buf1, buf2, buf3);

CIC_I(buf2, buf4);

CIC_Q(buf3, buf5);

Demod(buf4, buf5, buf6);

if (doFilter) {
Filter(buf6, buf7);

} else {

Copy(buf6, buf7);

}

Decimate(buf7, buf8);

Output(buf8);

}

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

15

Sample HISA Program
C (partitioned manually) Hyperprocessor ASM

task Init

task Config, CR2

L_TOP:

task GetFrame, CR3, R1:w

if true (CR3 != fail) jmpa L_End

task QAM, R1:r, R2:w, R3:w

task CIC_I, R2:r, R4:w

task CIC_Q, R3:r, R5:w

task Demod, R4:r, R5:r, R6:w

if (CR2 == true)

task Filter, R6:r, R7:w

if (CR2 == false)

task Copy, R6:r, R7:w

task Decimate, R7:r, R8:w

task Output, R8:r

jmpa L_TOP

L_END:

#define N 1024

bool doFilter;

int32 buf1[N], buf2[N], … ,buf8[N];

doFilter = Config();

while (GetFrame(buf1)) {

QAM(buf1, buf2, buf3);

CIC_I(buf2, buf4);

CIC_Q(buf3, buf5);

Demod(buf4, buf5, buf6);

if (doFilter) {
Filter(buf6, buf7);

} else {

Copy(buf6, buf7);

}

Decimate(buf7, buf8);

Output(buf8);

}

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

16

Enabler for System-Level Compiler
“The System is the CPU”

task Init

task Config, CR2

L_TOP:

task GetFrame, CR3, R1:w

if true (CR3 != fail) jmpa L_End

task QAM, R1:r, R2:w, R3:w

task CIC_I, R2:r, R4:w

task CIC_Q, R3:r, R5:w

task Demod, R4:r, R5:r, R6:w

if (CR2 == true)

task Filter, R6:r, R7:w

if (CR2 == false)

task Copy, R6:r, R7:w

task Decimate, R7:r, R8:w

task Output, R8:r

jmpa L_TOP

L_END:

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

17

HyperCompiler

Develop and implement compiler technology to
port applications to the Hyperprocessor.

• Reduces port time
• Enhances portability and reduces errors
• Reduces cost

HyperCompilerApplication
Control Program

Task Programs

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

18

Uniform Architecture from Smallest
Processing Element to Giant Compute

Farm

Parts of MLC Microprocessor Hyperprocessor Hypercomputer

Control Unit Instruction Task decode Task decode

decode and K-table and K-table and K-table

Dispatch Dispatch Dispatch

URF USE GPR +dirt URF + dirty bits Computer to do URF

Execution Units Multiple ALUs Many Many computers

Microprocessors

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

19

MLCA is a unique Architecture

Derived from Basic idea of a Microprocessor,
namely the Superscalar and Multiscalar
architectures to formulate a unique computing
Machine and solve today’s complex problems.

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

20

YesYesNoSpeculative

Common or distinct ??CommonCommon or distinctMemory space

Distinct and CommonCommonDistinctRegister space

Universal Register file,
local register files, and
storage

Register and memoryMemory, or message
passing

Medium for inter-task
communication

Tightly, Snugly, or
distributed

Tightly in Circular
fashion

Tightly, loosely, or
distributed

PE organization

Homogenous or
Heterogeneous

HomogenousHomogenous or
Heterogeneous

PE types

Not requiredNot required Required Static guarantee of inter-
task data independence

Not requiredNot requiredRequiredStatic guarantee of inter-
task control independence

Static and DynamicStatic and DynamicStaticTask Determination

MLCAMultiscalarMultiprocessorAttributes

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

21

A World of Opportunities

Supercomputers
Grid

MLCA AS SoC

Distributed
Systems Fault-tolerant

SystemsPervasive
Computing

GALS

AS Processors
(MoP)

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

22

Design Methodology

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

23

Design Methodology – 2

Application(s)

Partitioning

Resource
Allocation

Scheduling

Meet Constraints

Architectural
Framework

semi-auto
user knows application better

model parameters
CPU, registers, renaming, etc

compiler
performs scheduling better than human

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

24

Programming Model

Similarities with coarse-grain dataflow
• Actors ⇒ task (copy-in, copy-out)

But more flexible communication
• Arc ⇒ URF register
• Renaming will allow speedup

staten staten+1

Task 2

Task 3Task 1

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

25

GALS
Globally Asynchronous Locally Synchronous

Control Processor

Instruction
Queue

URF

PE PE PE

clock domain

Programming Model does not assume synchronous communications
Allows for software control of Voltage/frequency

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

26

What’s MLC?

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

27

What do we have?

A powerful abstraction (“programming model”)
• pseudo-sequential programming style
• usable by compilers (see work with UofT)
• Independent of memory architecture

memory architecture is dictated by application
does not rely on memory coherency

• based on coarse-grain dataflow
• fosters modular programming

An architecture framework that matches the programming
model

• natural mapping
• implementation (HW/SW) depends on application domain

A tool for exploration: functional model
• profile applications
• explore design space

computation, storage, communication, scheduling

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

28

An Example: H.264

Many ways to be H.264 compliant (45 levels so far)
Implementation of highest levels is still unsolved
Imagine an objective: develop an H.264 application
Steps to take:

• Develop an architecture for heterogeneous processors – check
• Develop programming model for processor architecture – check
• Construct block model of application
• Partition and profile application
• Scheduling
• Test

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

29

H.264 Block Diagram

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

30

Example Profile Result

Task 1: Motion estimate

Task 2: Predictor calculation

Task 3: Encoding

Task 4: Frame generation

10%

7%

30%

53%

Task1 Task3 Task4I frame

Task1 Task3 Task4P frame Task2

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

31

Examine Task Dependency
(for scheduling)

Frame n

Frame n + 1

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

32

Schedule Tasks

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

33

Prototype Machine

Assume 4-processor machine
• 2 fast (DSPs) and 2 slow (programmable)

Machine performance is easily estimated
• If performance is not satisfactory, add/upgrade processors
• Else, remove/downgrade processors

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

34

MP3 Decoder: Parallel Speedup

Scaling performance particularly with a large number of
renaming registers.

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
Processors

Sp
ee

du
p

ideal
1200 renaming registers
800 renaming registers
400 renaming registers

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

35

MP3 Decoder: Renaming Registers

Performance increases up to a “breakpoint”.
Performance may decrease with more renaming registers!

0

1

2

3

4

5

6

7

8

75 275 475 675 875 1075 1275 1475 1675
Renaming Registers

Sp
ee

du
p

8 procs
6 procs
4 procs
2 procs

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

36

MP3 Decoder: Resource Contention

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
Ports

Sp
ee

du
p

URF

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
Ports

Sp
ee

du
p

Memory

Little if any contention over URF registers and memory.

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

37

Research Challenges

How to form the control program and the tasks.
• The task formation problem

How to improve performance.
• The task optimization problem & Resource assignment

How to schedule tasks to improve performance and
reduce power.

• The task scheduling problem
How to synthesize a Hyperprocessor instance for a
given set of applications.

• The synthesis problem

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

38

On Going research activities

HyperCompiler
• University of Toronto

Applications
• UCLA, PolitecMilano, UCSD, and ST

Fault-tolerance
• UCSD

High Level Modeling
• CMU

HyperComputer
• AST lab

Future Work
• Mobile Supercomputing
• Hyper OS
• More industry standard Applications
• Development Methodology

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

39

Conclusion
MLCA is natural evolution of microprocessor and
system design to merge into a unified
architecture.
It gives the system image of single processor

• Simplifies design
• Simplifies programming
• Makes multiprocessing easy

Provides the system houses with top to bottom
design methodology.
Speeds up system design and TTM
RAS Issues

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

40

Thank You

	Multi-Level Computing Architectures(MLCA)Faraydon KarimST US-FellowEmerging Architectures
	Outline
	“The Key To Success”
	System-Level Programming Model
	Our Goal
	Multi-Level Computing Architectures
	MLCA in general
	Micro- and Macro-Architecture Analogy
	Micro- and Macro-Architecture Analogy
	Hyperprocessor
	Layered Programming
	Sample C Program
	Sample HISA Program
	Enabler for System-Level Compiler“The System is the CPU”
	HyperCompiler
	Uniform Architecture from Smallest Processing Element to Giant Compute Farm
	MLCA is a unique Architecture
	A World of Opportunities
	Design Methodology
	Design Methodology – 2
	Programming Model
	GALSGlobally Asynchronous Locally Synchronous
	What’s MLC?
	What do we have?
	An Example: H.264
	H.264 Block Diagram
	Example Profile Result
	Examine Task Dependency(for scheduling)
	Schedule Tasks
	Prototype Machine
	MP3 Decoder: Parallel Speedup
	MP3 Decoder: Renaming Registers
	MP3 Decoder: Resource Contention
	Research Challenges
	On Going research activities
	Conclusion
	Thank You

