74

Multi-Level Computing Architectures
(MLCA)

Faraydon Karim
ST US-Fellow

Emerging Architectures
Advanced System Technology

STMicroelectronics

Outline

~/ MLCA

. What's the problem
. Traditional solutions: VLIW, superscalar, multiscalar,
Multiprocessor
27 Vision, roadmap
. What MLCA enables, in different fields
o Status
. Tools we have

. Current research and cooperations
. Future work (short term)

ADVANCED SYSTEM TECHNOLOGY 2 [,l

La Jolla, CA

“The Key To Success”

“The key to success in parallel processing on a chip will
be the ability to map computational algorithms efficiently
on to an array of resources, and hide the complexity from
both programmer and user. The company that can do that
has a shot at being the next Intel.”

-- The Economist, March 13th 2003

ADVANCED SYSTEM TECHNOLOGY 3 [,l

La Jolla, CA

System-Level Design Needs

A Software/Systems Vision

TODAY:

« We don't know if a proposed solution will
solve a customers problem until we build it
(for infrastructure this takes us several years).

ik L -
| i
1 -
] | L
i e
-
L
| L
b -
-
5 [
:

TOMMOROW:

» An integrated software/system
development environment that
allows us to determine rapidly
if an architecture meets the
needs of the customer within a
few weeks to a few months!

o Data
Java

Marshaling

Jim Brodie, Manager, Performance Excellence, Motorola Global Software Group
at CODES+ISSS’03 SLD tools panel

ADVANCED SYSTEM TECHNOLOGY 4 [,l
La Jolla, CA

System-Level Programming Model

“The mismatch of concerns between the application and the target architecture results in an
implementation gap. To facilitate bridging this gap we introduce an intermediate layer called a
"Programming Model," which presents an abstraction of the underlying architecture while still
providing a natural way of describing applications.”

= natural design entry environment
« models application concurrency

Application Model

(E.Q. C"Ck} » rich library of elements
Imple ntation Programming Model
p * raises abstraction of architecture

« facilitates mapping of Application Model

. « multiple processing elements, multiple threads
Architecture » spacial purpose hardware

= heterogeneous memory architecture
(E 9. II’"‘ItEl IXP1 EUU} « on-chip communication mechanisms

» interaction with peripherals

source: http://www.gligascale.org/mescal/progmodel.html

http://www.gigascale.org/pubs/356.html
ADVANCED SYSTEM TECHNOLOGY 5 [,I

La Jolla, CA

Our Goal

27 Streamline the design of modern heterogeneous
multi-processor systems by providing

. An Architectural Framework,
« A Programming Model,
- Mapping Methodology and Tools

ADVANCED SYSTEM TECHNOLOGY 6 I ,l

La Jolla, CA

Multi-Level Computing Architectures

ADVANCED SYSTEM TECHNOLOGY 7 I ’l

La Jolla, CA

MLCA in general

Control Layer

Control Unit

K-Tables

Register

File

AUVANULECU OTOICIVI TEUINNULUOT

La Jolla, CA

iy 4

Micro- and Macro-Architecture Analogy

—

Processor
Micro Architecture

Instruction
Queue
ALU ALU * T
ILP

(Instruction-Level Parallelism)

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

Micro- and Macro-Architecture Analogy

Processor
Micro Architecture

Instruction

Queue

ALU

ALU

ILP
(Instruction-Level Parallelism)

Hyperprocessor
Macro Architecture

e

Instruction
Queue

HA ©

TLP
(Task-Level Parallelism)

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

~ky/

Control Processor

Processing Elements

PE = Processor,
FPGA
Hardware

Hyperprocessor

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

Control Unit URF

—y | == | - =3
—_ | | | || |=
) | === | |=

Execution Units

(Hypercomputer) o7

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

Layered Programming

mai n()

{
Top-level CDFG

while (GetFrame(bufl)) { + scheduling
QAM buf 1, buf2, buf3); \
CIC I (buf2, buf4);

O C_ (buf3, bufs5);

voi d
QAMint *ptrl, .)
{

}

voi d . Task bodies
CICl(int *ptr1, .)

{

Task
Dispatcher

oy

}

Sample C Program

C (partitioned manually)

#define N 1024
bool doFilter;
int32 buf 1[N}, buf2[N}, ...,buf8[N;
doFilter = Config();

while (GetFranme(bufl)) {

QAM buf 1, buf2, buf3);
CIC.I(buf2, bufd);

Cl C_ Q buf3, bufb);
Denod(buf 4, buf5, buf6);

if (doFilter) {
Filter(buf6, buf7);

} else {
Copy(buf 6, buf7);
}
Deci mat e(buf 7, buf 8);
Qut put (buf 8) ;

Init

/——Contro/ flow ~—

rame

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

Sample HISA Program

C (partitioned manually)

#define N 1024
bool doFilter;
int32 buf 1[N}, buf2[N}, ...,buf8[N;
doFilter = Config();
while (GetFranme(bufl)) {
QAM buf 1, buf2, buf3);
CIC I (buf2, buf4);
Cl C X buf3, bufb);
Denmod(buf 4, buf5, buf6);

I f (doFilter)
Filter(buf6, buf7);

} else {
Copy(buf 6, buf7);
}
Deci mat e(buf 7, buf 8);
Qut put (buf 8) ;

Hyperprocessor ASM

task I nit
task Config, CR2
L TOP:
task GetFranme, CR3, Rl:w
if true (CR3 !=fail) jnpa L_End
task QAM Rl:r, R2:w, R3:w
task CIC I, R2:r, R4d:w
task CICQ R3:r, R5:w
task Denod, R4:r, R5:r, R6:w
I f (CR2 == true)

task Filter, R6:r, R7:w
I f (CR2 == fal se)

task Copy, R6:r, R7:w
task Decimate, R7:r, R8:w
task Qutput, R8:r
jmpa L_TOP
L END:

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

~ky/

Enabler for System-Level Compiler
“The System is the CPU”

L=] enainewc/Controller
Fle Edt Vew Samlsion Fomsl Took Help
OEE&@ pr @ = Rpmt §br = a5

task Init
task Config, CR2
L _TOP:

Hyperprocessor

task GetFrane, CR3, Rl:w Macro Architecture

if true (CR3 != fail) jnpa L_End
task QAM Rl:r, R2:w, R3:w

Fh 8t Vew Sombvion Fowal Toch Hop

e e L | task CIC |, R2:r, R4:w
(losed-Loop Engine Speed Control t aSk cac Q: R3:r , R5: w
o - Instruction
task Demod, R4:r, R5:r, R6:w Queue

if (CR2 == true)

task Filter, R6:r, R7:w
if (== fal se) @

task Copy, R6:r, R7:w

task Decimate, R7:r, R8:w

task Qutput, R8:r TLP

jnpa L_TOP (Task-Level Parallelism)
L_END:

ADVANCED SYSTEM TECHNOLOGY 16

La Jolla, CA ’ l

HyperCompiler

= Develop and implement compiler technology to
port applications to the Hyperprocessor.

o Control Program
Application

Task Programs

Reduces port time
Enhances portability and reduces errors
Reduces cost

ADVANCED SYSTEM TECHNOLOGY 17 I ,l

La Jolla, CA

Uniform Architecture from Smallest
Processing Element to Giant Compute

Farm
Parts of MLC Microprocessor Hyperprocessa Hypercomputer
Control Unit Instruction Task decode Task decode
decode and K-tabje and K-table and K-table
Dispatch Dispatch Dispatch
URF USE GPR +dirt URF + dirty bits Computer to do URF
Execution Units Multiple ALUs Many Many computers

Microprocessors

ADVANCED SYSTEM TE
La Jolla, CA

CHNOLOGY

~ky/

MLCA is a unique Architecture

Derived from Basic idea of a Microprocessor,
namely the Superscalar and Multiscalar
architectures to formulate a unique computing
Machine and solve today’s complex problems.

ADVANCED SYSTEM TECHNOLOGY 19 I ,l

La Jolla, CA

Attributes _ Multiprocessor _ Multiscalar _ MLCA
“Task Determination Static Static and Dynamic Static and Dynamic
Static guarantee of inter- Required Not required Not required
task control independence
Static guarantee of inter- Required Not required Not required

task data independence

PE types

Homogenous or
Heterogeneous

Homogenous

Homogenous or
Heterogeneous

PE organization

Tightly, loosely, or
distributed

Tightly in Circular
fashion

Tightly, Snugly, or
distributed

Medium for inter-task
communication

Memory, or message
passing

Register and memory

Universal Register file,
local register files, and
storage

Register space Distinct Common Distinct and Common
Memory space Common or distinct Common Common or distinct ?7?
Speculative No Yes Yes

ADVANCED SYSTEM TECHNOLIGY I

La Jolla, CA

20

A World of Opportunities

Supercomputers

Distributed
Systems

MLCA AS SoC

AS Processors
(MoP)

Grid

Pervasive
Computing

GALS

Fault-tolerant
Systems

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

Design Methodology

Architecture Design: Y - Chart

Benchmark driven, based on a Set of Applications

[Perfnrmance J

Data

ST, October 27 2003, La Jlla €A, K. Vissers 2-30

ADVANCED SYSTEM TECHNOLOGY 22 [’l

La Jolla, CA

Design Methodology — 2

Application(s)

Meet Constraints

con
perf

Md
CPL

pile
DIFMS

semi-auto
user knows application better

)del parameters
J, registers, renaming, etc

r
scheduling better than human

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

=AY/

Programming Model

27 Similarities with coarse-grain dataflow
Actors = task (copy-in, copy-out)

= But more flexible communication
Arc = UREF register
Renaming will allow speedup

state, state, ,

Task 2

Task 1 Task 3

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

GALS

Globally Asynchronous Locally Synchronous

27 Programming Model does not assume synchronous communications
27 Allows for software control of Voltage/frequency

ADVANCED SYSTEM TECHNOLOGY 25 I ’l

La Jolla, CA

What’s MLC?

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

What do we have?

27 A powerful abstraction (“programming model”)
pseudo-sequential programming style
usable by compilers (see work with UofT)

Independent of memory architecture
* memory architecture is dictated by application
» does not rely on memory coherency

based on coarse-grain dataflow
fosters modular programming
27 An architecture framework that matches the programming
model
natural mapping
implementation (HW/SW) depends on application domain

27 A tool for exploration: functional model

profile applications

explore design space
» computation, storage, communication, scheduling

ADVANCED SYSTEM TECHNOLOGY 27 [,l

La Jolla, CA

An Example: H.264

~ Many ways to be H.264 compliant (45 levels so far)
27 Implementation of highest levels is still unsolved

27 Imagine an objective: develop an H.264 application
2 Steps to take:

Develop an architecture for heterogeneous processors — check
Develop programming model for processor architecture — check
Construct block model of application

Partition and profile application

Scheduling

Test

ADVANCED SYSTEM TECHNOLOGY 28 [,l

La Jolla, CA

H.264 Block Diagram

Quantization step sizes
increased at a compounding

Coding Contral rate of approximately 12.5%
;:::“ 1 Cruantized Transform
4 Transform —4 Oruantizatbon Cocflicients

4x4 Integer Transform (fixed)

r -r - - 1 1T - "= - =1
I Predicied Inverse I
| Macrablock Quantization ||
I Intra Inter 1 = £ Bit S Ou
t Stecai Ot
I [Everse I E;:;r:;—v ——
I Intra Inter Muotion Transform
| Prediction and Compensation | ¥
Compensation I Single Universal VLC &
| | : Context-Adaptive VLC OR
| ; . Context-Based Adaptive
| Binary Arithmetic Coding

I Frame Store I
: * Loop Filbter |
| L _.I Mathon Estimathon I No mismatch
I Muotion Vectors I
h o] e e e e — — T ey e . |

Intra Prediction Modes Seven block sizes and shapes

9 4x4, 4 16x16 modes (luma) & 4 Y-pel-motion estimation accuracy

modes (chroma) = 17 modes Five Prediction modes with B-pictures

Muiltiple reference picture selection

ADVANCED SYSTEM TECHNOLOGY 29 [’l

La Jolla, CA

Example Profile Result

Task 1: Motion estimate _ 53%

Task 2: Predictor calculation . 10%
Task 3: Encoding - 30%
Task 4: Frame generation D 7%

| frame

P frame

ADVANCED SYSTEM TECHNOLOGY 30 [,l

La Jolla, CA

Examine Task Dependency

(for scheduling)

ffffffffffff

,,,,,,,,,,,,,

,,,,,,,,,,,,,

,,,,,,,,,,,,,

,,,,,,,,,,,,,

Frame n

Frame n + 1

s

v

v

"

ADVANCED SYSTEM TECHNOLOGY

La Jolla, CA

31

Schedule Tasks

32

ADVANCED SYSTEM TECHNOLOGY

La Jolla, CA

A4

Prototype Machine

=7 Assume 4-processor machine
2 fast (DSPs) and 2 slow (programmable)

=7 Machine performance is easily estimated
If performance is not satisfactory, add/upgrade processors
Else, remove/downgrade processors

ADVANCED SYSTEM TECHNOLOGY 33 I ’l

La Jolla, CA

MP3 Decoder: Parallel Speedup

8
7 - ideal
—— 1200 renaming registers
|| -#—800 renaming registers
6 —— 400 renaming registers

0 1 1 ! !

1 2 3 4 5 6 7 8
Processors

27 Scaling performance particularly with a large number of
renaming registers.

ADVANCED SYSTEM TECHNOLOGY 34 [,l

La Jolla, CA

MP3 Decoder: Renaming Registers

—o— 8 procs
—— 6 procs
6 - 4 procs
2 procs

24 "

)
A

T4

V?

_ad

0 I I I I I I I

75 275 475 675 875 1075 1275 1475 1675
Renaming Registers

s Performance increases up to a “breakpoint”.
2 Performance may decrease with more renaming registers!

ADVANCED SYSTEM TECHNOLOGY 35 [,I

La Jolla, CA

MP3 Decoder: Resource Contention

URF Memory
8 8
7 1 7 1
*___‘/0 - ¢
6 6 1
5 1 5 1
g s
24 - ?34
> =9
3 - CD3_
2 - 2 -
11 1 1
0 0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Ports Ports

2 Little if any contention over URF registers and memory.

ADVANCED SYSTEM TECHNOLOGY 36 [,I

La Jolla, CA

Research Challenges

=7 How to form the control program and the tasks.
The task formation problem

=7 How to improve performance.
The task optimization problem & Resource assignment

=7 How to schedule tasks to improve performance and
reduce power.
The task scheduling problem
27 How to synthesize a Hyperprocessor instance for a
given set of applications.
The synthesis problem

ADVANCED SYSTEM TECHNOLOGY 37 [,l

La Jolla, CA

On Going research activities

2 HyperCompiler

University of Toronto
2 Applications

UCLA, PolitecMilano, UCSD, and ST
7 Fault-tolerance

UCSD

2 High Level Modeling
. CMU
o HyperComputer
AST lab
=7 Future Work
Mobile Supercomputing

Hyper OS
More industry standard Applications

ADVANCED Qgsﬁmﬁﬁ ETSZ# WEHHOEO1E gy

La Jolla, CA

Conclusion

27 MLCA is natural evolution of microprocessor and
system design to merge into a unified
architecture.

27 It gives the system image of single processor

. Simplifies design
. Simplifies programming
. Makes multiprocessing easy

= Provides the system houses with top to bottom
design methodology.

7 Speeds up system design and TTM
2 RAS Issues

ADVANCED SYSTEM TECHNOLOGY 39 I ,l

La Jolla, CA

Thank You

ADVANCED SYSTEM TECHNOLOGY
La Jolla, CA

	Multi-Level Computing Architectures(MLCA)Faraydon KarimST US-FellowEmerging Architectures
	Outline
	“The Key To Success”
	System-Level Programming Model
	Our Goal
	Multi-Level Computing Architectures
	MLCA in general
	Micro- and Macro-Architecture Analogy
	Micro- and Macro-Architecture Analogy
	Hyperprocessor
	Layered Programming
	Sample C Program
	Sample HISA Program
	Enabler for System-Level Compiler“The System is the CPU”
	HyperCompiler
	Uniform Architecture from Smallest Processing Element to Giant Compute Farm
	MLCA is a unique Architecture
	A World of Opportunities
	Design Methodology
	Design Methodology – 2
	Programming Model
	GALSGlobally Asynchronous Locally Synchronous
	What’s MLC?
	What do we have?
	An Example: H.264
	H.264 Block Diagram
	Example Profile Result
	Examine Task Dependency(for scheduling)
	Schedule Tasks
	Prototype Machine
	MP3 Decoder: Parallel Speedup
	MP3 Decoder: Renaming Registers
	MP3 Decoder: Resource Contention
	Research Challenges
	On Going research activities
	Conclusion
	Thank You

