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Function of a GPU

® Synthesize realistic 3-d 1mages 1n real time
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Fragment processing

® Z-buffer pipelines
originally
designed to
minimize
computation using
spatial coherence
m Interpolation for
position, color,
mapping etc
instead of full-
blown ray-object
intersections and
lighting
computations
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Vertex
processing

® Floating point
processing of
vertex position,
normal, color,
etc

® 4-clement
matrix-vector
operations
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Basic GPU Organization

®To date this has been done using a z-buffer
pipeline
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Key GPU performance 1ssues

® In current technology, computation 1s cheap but
the memory interface 1s slow
m DRAM is typically around 200 clock cycles from the
Proccssor
® Fortunately, spatial coherence also leads to
locality of memory references and thus good
memory access behavior

B So, z-buffer pipelines are still well-suited to
modern technology



Recent trends

B Programmability

® Original z-buffer based systems streamed data
through fixed pipelines

B Now, fragment processing supports programmable
shading

B Vertex processing also becoming more
programmable

® Still streaming through programmable processors



Current generation example —
ATI Radeon 9700
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Programmable vertex processing
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Programmable fragment
processing
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Where to go from here?

B More of the same- more programmability, more
parallelism?

® How about higher quality imagery-global
1llumination

® The fundamental compromise 1n a z-buffer
pipeline 1s the use of local 1llumination to take
maximum advantage of coherence

® Can we get beyond the need for this compromise
1n next-generation machines?



Hardware supported global
1llumination

® How about real-time ray tracing?

m Already done for static scenes of limited size on
existing GPUs

m Already done with fewer limitations on large-
scale parallel machines
® Our aim 1s to do this for fully dynamic
scenes of comparable complexity to those
handled by modern z-buffer pipelines



Algorithmic requirements

® We will have to start by changing the way
graphics systems are constructed
m Key feature — separation of modeling functions from

rendering functions, OpenGL and DirectX APIs
provide the interface

m Today’s chips support rendering but not modeling

m CPU has to support modeling, but this 1s becoming ever
more 1important to overall system performance
m Occlusion culling

m Scene graph management



Uniting modeling with rendering

B Ray tracing requires spatial data structures for
acceleration that are quite similar to occlusion
culling structures

B Z-buffers systems now deal awkwardly with
occulusion culling support

® GPU can be made much faster than CPU at this
critical function

B GPU will support both modeling and rendering




System architecture
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Future GPU characteristics

B Must support irregular computations

m Today we are just getting data dependent branching
into these systems

B Must be highly programmable

m Applications are more diverse than rendering
® Must be bandwidth — not latency — optimized

B Must continue to be highly parallel for
performance



Our proposed architecture
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Approaching the efficiency of
z-buffers

® We have been working to adapt ray tracing
algorithms to perform well on the 2 level on
chip cache scheme envisioned above

m K-d tree as both acceleration structure and L2
cache management structure

m New ray ordering to maximize cache utilization
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Test scene results
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Real scene results

kd-tree Soda Hall (1024 x 1024)
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How general purpose will these
be?

# GPUs are more powerful than CPUs, 1f they
become more generally useful, the capacity
of networks of PCs for scientific
computation will dwarf those of today

®m Since GPUs are as necessary to modern PCs
as CPUs, we envision the evolution of

single-die systems containing both the serial
CPU and the parallel GPU



Conclusions

® Global 1llumination — the next (and near) frontier
for GPUs

® This will require a finer-grained version of the
multithreaded, multicore architectures emerging
today

® Tight coupling of modeling and rendering
B New algorithmic approaches

® New substrate for general scientific computing




