GPU Architectures tor Global

[1lumination and Beyond

Donald S. Fussell
Department of Computer Science
The University of Texas at Austin

o EodmmammmRRR

UT Graphics Architecture Team

B Faculty
m Don Fussell
m Bill Mark

® Students

m Chris Burns

m |[krima Elhassan
m Greg Johnson

m Juhyun Lee

m Chris Lundberg
m Paul Navratil

m Chendi Zhang

Function of a GPU

® Synthesize realistic 3-d 1mages 1n real time

<3

eye

view window

world

3D Rendering

Ray Tracing

Shadow
!

I Ray Tracing

Fragment processing

® Z-buffer pipelines
originally
designed to
minimize
computation using
spatial coherence
m Interpolation for
position, color,
mapping etc
instead of full-
blown ray-object
intersections and
lighting
computations

(,determined by interpolating between C, and C,
C; determined by interpolating between C, and C,
interpolate between C, and C; along span

C,

C,

scan line

span

Vertex
processing

® Floating point
processing of
vertex position,
normal, color,
etc

® 4-clement
matrix-vector
operations

VIEWING ALGORITHM

WSfomaﬁons

Y
W
G
P
P
z
Warld Space
{right-handed

=
I

ram— ‘&\itherclipping
A J distance
et oflinterest
i]

ohsener position
e
(7

yon clipping
distance

Eye Space
(left-handed)

|
WoHd to Eye Space Transformmation
i W\m Matrix Multiply

[bzl clipping space]

Image Space

Perspective Divide

600

—,

Viewport 400
Mapping 200

300

Screen Space

Basic GPU Organization

®To date this has been done using a z-buffer
pipeline

Soacs! [Scale, Rotate, | Worlt [Specily View, worid [Apply _
Model Object -1 Translate Calculate Normal }-Eg] Normalizing
Objects [lumination, Transformation
Backface Clip

¥ | Perspeciive mage R emove Hidden Shade, Map
ﬂaﬁ Tranl;furmaﬁun —Iﬁi Surfaces] Texture —p| Viewport/
! Projection ‘[S)craw to
reen

Key GPU performance 1ssues

® In current technology, computation 1s cheap but
the memory interface 1s slow
m DRAM is typically around 200 clock cycles from the
Proccssor
® Fortunately, spatial coherence also leads to
locality of memory references and thus good
memory access behavior

B So, z-buffer pipelines are still well-suited to
modern technology

Recent trends

B Programmability

® Original z-buffer based systems streamed data
through fixed pipelines

B Now, fragment processing supports programmable
shading

B Vertex processing also becoming more
programmable

® Still streaming through programmable processors

Current generation example —
ATI Radeon 9700

HIGH PERFORMANCE GRAPHICS MEMORY

256-B1T 0UAD-CHANNEL]
BDR MEMORY INTERFACE :

VERTEX PROCESSING
ENGINE

--;i SETUP ENGINE i Im
[e 1 — ~SCURCE
|| s |
| RENDERING & ™™ |
ENGINE

—{ SHOOTRISON 1.0
SMEI-KLUKSIHG 'LIMET ; |

Programmable vertex processing

VERTEX DATA

. 1
(r ~ -.,

WWWFF&E

EJIHI.' 128- EIT'JEIL'H
PROCESSOR PROCESSOR

PH]ITMMH’

-
RACKFACE CULLIG]

Programmable fragment
processing

PIXEL DATA
PROGRAMMARLE THITTOR
| PIXEL SHADER UMIT

[FLOATIN FLEATING FLOATING
IEUIHJ[HE o ﬁurn iHH'ETEE POINT COLOR
| TEXTURE LT PROCESS08 PROCESSDR
. if

MISOTROP STENCIL TEST i

ALPHA muu‘rrs e

Where to go from here?

B More of the same- more programmability, more
parallelism?

® How about higher quality imagery-global
1llumination

® The fundamental compromise 1n a z-buffer
pipeline 1s the use of local 1llumination to take
maximum advantage of coherence

® Can we get beyond the need for this compromise
1n next-generation machines?

Hardware supported global
1llumination

® How about real-time ray tracing?

m Already done for static scenes of limited size on
existing GPUs

m Already done with fewer limitations on large-
scale parallel machines
® Our aim 1s to do this for fully dynamic
scenes of comparable complexity to those
handled by modern z-buffer pipelines

Algorithmic requirements

® We will have to start by changing the way
graphics systems are constructed
m Key feature — separation of modeling functions from

rendering functions, OpenGL and DirectX APIs
provide the interface

m Today’s chips support rendering but not modeling

m CPU has to support modeling, but this 1s becoming ever
more 1important to overall system performance
m Occlusion culling

m Scene graph management

Uniting modeling with rendering

B Ray tracing requires spatial data structures for
acceleration that are quite similar to occlusion
culling structures

B Z-buffers systems now deal awkwardly with
occulusion culling support

® GPU can be made much faster than CPU at this
critical function

B GPU will support both modeling and rendering

System architecture

Today’s Proposed
System Architecture System Architecture
CPU GPU CPU GPU/PPU
N e Application Application
5 Application pI:: ode ppc ode
pripSHEL O AR Scenemanaser I @@
< cene manag.er mtegrated
= Seene Manager | (g gamo engine) ___scene manager
2 Renderin _ and ray tracing
= Algorithn%s OpenGL/Direct3D sl
5‘) ----------------------- -(Z-buffer algorithm- -
embedded in HW) Flexible
r% Hardware parallel hardware

Future GPU characteristics

B Must support irregular computations

m Today we are just getting data dependent branching
into these systems

B Must be highly programmable

m Applications are more diverse than rendering
® Must be bandwidth — not latency — optimized

B Must continue to be highly parallel for
performance

Our proposed architecture

® MIMD

Jultithreaded ultithreaded
. (Watelsl . Ray
Mutithreaced? e Manager Lt rsace Pracessar
Ml Fay
iZpL . -
Marnacer = # Processar |= *
) # L1 Cache 4 L1 Car he
L1 Cae be L1 Cache |« *° L1 Cache |« = °
Frame
Buffer
L2 Carhe
Display
Interface

® Multicore

® Multithreaded

:

256 bit Quad Channel DR Mermary Interface

Higgh Perfarmrance Merony

[v] —Ull.r. —.]

Approaching the efficiency of
z-buffers

® We have been working to adapt ray tracing
algorithms to perform well on the 2 level on
chip cache scheme envisioned above

m K-d tree as both acceleration structure and L2
cache management structure

m New ray ordering to maximize cache utilization

I Ray Tracing

Test scene results

sponge43 inside - kd-tree (1024)

100.00% .\.

80.00% - \
£ 60.00% \
(/2] \
2 40.00% L
£ \

20.00% A -

0.00% \5-"'5"
0.0001 0.001 0.01 0.1 1 10
cache size / tris used
—e— Recursive —¢— Recursive (sfc) —m—Wald 2 x 2
Pharr row -major order —e— Bucket/Packet (row -major) Buckets w ith object-order

Test scene results

sponge 34 inside - kd-tree (1024)
100.00%
80.00% A
£ 60.00% \
: \
2 40.00%
£
20.00% A
0.00% = (= (= —-— = - -
0.0001 0.001 0.01 0.1 1
cache size / tris used
—e— Recursive —¢— Recursive (sfc) —m—Wald 2 x 2
Pharr row -major order —e— Bucket/Packet (row -major) Buckets w ith object-order

Real scene results

kd-tree Soda Hall (1024 x 1024)
70.00% -
60.00%
50.00% A
£ 40.00% |
0
2 30.00% ~.
E 20.00% N \'\\.\ AN
10.00% \
0.00% +—=——= \9-;0 \:%_
0.001 0.01 0.1 1
cache size / geometry touched
—&— Recursive —¢— Recursive (sfc) —m— Wald 2 x 2
Pharr row -major order —e— Bucket/Packet (row -major) Buckets w ith object-order

How general purpose will these
be?

GPUs are more powerful than CPUs, 1f they
become more generally useful, the capacity
of networks of PCs for scientific
computation will dwarf those of today

®m Since GPUs are as necessary to modern PCs
as CPUs, we envision the evolution of

single-die systems containing both the serial
CPU and the parallel GPU

Conclusions

® Global 1llumination — the next (and near) frontier
for GPUs

® This will require a finer-grained version of the
multithreaded, multicore architectures emerging
today

® Tight coupling of modeling and rendering
B New algorithmic approaches

® New substrate for general scientific computing

