
GPU Architectures for Global 
Illumination and Beyond

Donald S. Fussell
Department of Computer Science
The University of Texas at Austin



UT Graphics Architecture Team

Faculty
Don Fussell
Bill Mark

Students
Chris Burns 
Ikrima Elhassan
Greg Johnson
Juhyun Lee
Chris Lundberg
Paul Navratil
Chendi Zhang



Function of a GPU

Synthesize realistic 3-d images in real time



3D Rendering



Ray Tracing



Ray Tracing



Fragment processing

Z-buffer pipelines 
originally 
designed to 
minimize 
computation using 
spatial coherence

Interpolation for 
position, color, 
mapping etc 
instead of full-
blown ray-object 
intersections and 
lighting 
computations



Vertex
processing

Floating point 
processing of 
vertex position, 
normal, color, 
etc
4-element 
matrix-vector 
operations



Basic GPU Organization

To date this has been done using a z-buffer 
pipeline



Key GPU performance issues

In current technology, computation is cheap but 
the memory interface is slow

DRAM is typically around 200 clock cycles from the 
processor

Fortunately, spatial coherence also leads to 
locality of memory references and thus good 
memory access behavior
So, z-buffer pipelines are still well-suited to 
modern technology



Recent trends

Programmability
Original z-buffer based systems streamed data 
through fixed pipelines
Now, fragment processing supports programmable 
shading
Vertex processing also becoming more 
programmable
Still streaming through programmable processors



Current generation example –
ATI Radeon 9700



Programmable vertex processing



Programmable fragment 
processing



Where to go from here?

More of the same- more programmability, more 
parallelism?
How about higher quality imagery-global 
illumination
The fundamental compromise in a z-buffer 
pipeline is the use of local illumination to take 
maximum advantage of coherence
Can we get beyond the need for this compromise 
in next-generation machines?



Hardware supported global 
illumination

How about real-time ray tracing?
Already done for static scenes of limited size on 
existing GPUs
Already done with fewer limitations on large-
scale parallel machines

Our aim is to do this for fully dynamic 
scenes of comparable complexity to those 
handled by modern z-buffer pipelines



Algorithmic requirements

We will have to start by changing the way 
graphics systems are constructed

Key feature – separation of modeling functions from 
rendering functions, OpenGL and DirectX APIs 
provide the interface
Today’s chips support rendering but not modeling
CPU has to support modeling, but this is becoming ever 
more important to overall system performance

Occlusion culling
Scene graph management 



Uniting modeling with rendering

Ray tracing requires spatial data structures for 
acceleration that are quite similar to occlusion 
culling structures
Z-buffers systems now deal awkwardly with 
occulusion culling support
GPU can be made much faster than CPU at this 
critical function
GPU will support both modeling and rendering



System architecture



Future GPU characteristics

Must support irregular computations
Today we are just getting data dependent branching 
into these systems

Must be highly programmable
Applications are more diverse than rendering

Must be bandwidth – not latency – optimized
Must continue to be highly parallel for 
performance



Our proposed architecture

MIMD
Multicore
Multithreaded



Approaching the efficiency of 
z-buffers

We have been working to adapt ray tracing 
algorithms to perform well on the 2 level on 
chip cache scheme envisioned above

K-d tree as both acceleration structure and L2 
cache management structure
New ray ordering to maximize cache utilization



Ray Tracing



Test scene results

sponge43 inside - kd-tree (1024)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0.0001 0.001 0.01 0.1 1 10

cache size / tris used

m
is

s 
ra

te

Recursive Recursive (sfc) Wald 2 x 2

Pharr row -major order Bucket/Packet (row -major) Buckets w ith object-order



Test scene results

sponge34 inside - kd-tree (1024)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0.0001 0.001 0.01 0.1 1

cache size / tris used

m
is

s 
ra

te

Recursive Recursive (sfc) Wald 2 x 2

Pharr row -major order Bucket/Packet (row -major) Buckets w ith object-order



Real scene results

kd-tree Soda Hall (1024 x 1024)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

0.001 0.01 0.1 1

cache size / geometry touched

m
is

s 
ra

te

Recursive Recursive (sfc) Wald 2 x 2

Pharr row -major order Bucket/Packet (row -major) Buckets w ith object-order



How general purpose will these 
be?

GPUs are more powerful than CPUs, if they 
become more generally useful, the capacity 
of networks of PCs for scientific 
computation will dwarf those of today
Since GPUs are as necessary to modern PCs 
as CPUs, we envision the evolution of 
single-die systems containing both the serial 
CPU and the parallel GPU



Conclusions

Global illumination – the next (and near) frontier 
for GPUs
This will require a finer-grained version of the 
multithreaded, multicore architectures emerging 
today
Tight coupling of modeling and rendering
New algorithmic approaches
New substrate for general scientific computing


