
1THE ARCHITECTURE FOR THE DIGITAL WORLD MPSoC 2004

Challenges in programming
multiprocessor platforms

John Goodacre
ARM Ltd

MPSoC’04
4th International Seminar on

Application-Specific Multi-Processor SoC

5 - 9 July 2004
Hôtellerie du Couvent Royal,

Saint-Maximin la Sainte Baume, France

2THE ARCHITECTURE FOR THE DIGITAL WORLD MPSoC 2004

First, Some Terminology
Disclaimer – I don’t have enough space or time to offer a
definitive list of all MPSoC architectures….
– So I’ll concentrate on MP in open platforms

Hardware processor arrangements
– Heterogeneous – multiple different processors
– Homogeneous – multiples of the same processor

Software arrangements
– Asymmetric – running different code base
– Symmetric – running the same code

Units of work
– Application – the problem to be solved

• Defined by product requirements
– Task – programmer bounded representation of work within an

application
• Defined at design time

– Thread – a mechanism to implement tasks within an
application

• Used during software implementation

3THE ARCHITECTURE FOR THE DIGITAL WORLD MPSoC 2004

Challenges in Software Design
Time schedules
– It’s only software, you can make it do anything…

Programmability is essential
– Increasing complexity when running multiple

dynamic applications
– Tools / visibility of software is getting harder
– Verification / repeatability
– Design and test development environments are

getting more complex

Reusability is a fact of life!
– Needing portability of solution

• Needing a layered abstraction of functionality

4THE ARCHITECTURE FOR THE DIGITAL WORLD MPSoC 2004

Hardware is reaching physical limits
Classical single instruction context (uniprocessors)
are failing to scale using current methods
– Can’t extract more from instruction level parallelism

Processor engines are needing to get help from the
application programmer
– Getting developers to represent their application

using multiple instruction context

High performance from high MHz is reaching
thermal / energy limits in desktop and embedded
– “Intel cancels P4 in favour of multicore”
– “ARM announces multiprocessor core”
– “IBM says scaling from process reduction is dead”

5THE ARCHITECTURE FOR THE DIGITAL WORLD MPSoC 2004

Microarchitectures must evolve
Po

w
er

 C
on

su
m

pt
io

n

Higher frequency cores
use more power
as voltage factor is squared
Power = k * MHz * vt * vt

1320 DMIPS
MIPS 20Kc is 20mm2 (32/32K cache)
MPCore is 16mm2 (16/16k x 2)

2600 DMIPS
PIII-M is 80mm2 (32/32k + 256)
MPCore is 37mm2 (16/64k x 4)

Comparisons from public information. All processors using 130nm process.

20%
Smaller

MIPS 20Kc

Pentium III Mobile

53%
Smaller

Performance

MPCore 2-way

MPCore 4-way

MPCore

6THE ARCHITECTURE FOR THE DIGITAL WORLD MPSoC 2004

‘Classic’ Heterogeneous Asymmetric
T.I. OMAP ‘Dual-Core’ Applications Processor
– ARM Host processor
– T.I. Media DSP

7THE ARCHITECTURE FOR THE DIGITAL WORLD MPSoC 2004

Homogeneous Asymmetric
For example: Network Processor
– ARM PrimeXsys™ Dual-Core Platform

Channel Processing
– NAT, Firewall, IP stack

Host Processor
– GUI and configuration
– Email services

8THE ARCHITECTURE FOR THE DIGITAL WORLD MPSoC 2004

Asymmetric Multiprocessing (AMP)
Software model that enables programmer to run
multiple simultaneous applications
– Uses a message based interconnect between both

heterogeneous and homogeneous processors
– Offered in various form (for a long time!)

• Inmos Transputer (homogeneous MP)
• Tensilica “sea of processors”
• Custom designs, eg Agere eight way ARM966E-S™

Provides an efficient solution when the application
can be statically partitioned across processors
– Allows effects of a task to be isolated from others
– Provides a simple mechanism to grow existing code

on to a MPSoC

9THE ARCHITECTURE FOR THE DIGITAL WORLD MPSoC 2004

Example of AMP code
Application on host CPU
– Prepares work
– Sends to slave CPU
– Waits for it to be done

• Get on with something else
– Uses the work

Application on slave CPU
– Waits for work from host
– Does the work
– Send it back to host

main() {
while(! Shutdown) {

work = GetWork();
SendToWorker(work);
work = WaitForWorkComplete();
DisplayWork(work);

}
}

main() {
while(! Shutdown) {

work = ReceiveWork();
DoWork(work);
PostWork(workQueue, work);

}
}

10THE ARCHITECTURE FOR THE DIGITAL WORLD MPSoC 2004

Challenges of Asymmetric MP…
Programmer needs to split application and
statically allocate sub-applications to processors
– Possibly across different microarchitectures
– Very difficult if you don’t ‘know’ the application

The complexity of managing the dynamic
workloads of open platforms breaks this model
– Difficult to ensure efficient utilization of processors

• Dynamic nature can overload specific processors
• Difficult to provide single task scalability

– All vendor solutions are different
• Causing fragmentation in tools support
• Need a rewrite / rearchitecture if you need to change

11THE ARCHITECTURE FOR THE DIGITAL WORLD MPSoC 2004

Symmetric Multiprocessing (SMP)
Software model that enables programmer to utilize
multiple instruction context architectures
– Assumes common memory, common peripheral
– Offered by various hardware architectures

• Asymmetric MP with coherent interconnect
• Symmetric MP with coherent caches
• Multi-threaded uniprocessors with common cache

Provides a common model to increase standards
– Programmer uses threads to represent their tasks
– Operating system schedule threads over processors
– Seen as the next dominant programming model

• Still portable between uniprocessor designs

12THE ARCHITECTURE FOR THE DIGITAL WORLD MPSoC 2004

Example of multi-tasked application
‘Typical whiteboard design’ of a video-phone
– Application is initially designed as multiple tasks

Video
Decode

Audio
Encode

Video
Encode

Audio
Decode

Stream
Processing

Network
Interface

Camera

Screen

Microphone

Speaker

13THE ARCHITECTURE FOR THE DIGITAL WORLD MPSoC 2004

Various implementation options
Uniprocessor
– Event driven, cooperative time sliced

• Asynchronous work dispatch
– Pre-emptive time sliced multi-threading

Multiprocessor
– Same as uniprocessor
– With the OS also able to share threads over CPU

• Reduces cost of context switching
• Improves system level response

Easiest in both cases is to simply map application
tasks to threads
– Allows existing code implementations to be used

14THE ARCHITECTURE FOR THE DIGITAL WORLD MPSoC 2004

Multi-threading mechanisms
Fork-Exec: Create a thread on demand
– Task has a clear start and end condition
– The task is long lived

• Enough to hide the cost of creating/killing thread
– Useful to migrate existing code to multi-tasked app.
– Each task likely to have multiple synchronization

points
• Incorrect partitioning can destroy performance

Worker Pool: hand off work of to pool of workers
– Application has clearly defined ‘units of work’
– Pool of tasks waiting for work
– Task synchronization best limited to split/merge of

work unit
• Need to ensure work items are not serially dependant

15THE ARCHITECTURE FOR THE DIGITAL WORLD MPSoC 2004

Example of multitasking
Fork-Exec Worker Pooling

main() {
while(! Shutdown) {

work = WaitForWork();
CreateThread(WorkerTask, work);

}
}

WorkerTask(work) {
DoWork(work);

}

main() {
For(i = 0; i< numCPU * 2; i++) {

CreatThread(WorkerTask, workQueue);
}

While(! Shutdown) {
work = WaitForWork();
PostWork(workQueue, work);

}
}

WorkerTask(workQueue) {
while(! Shutdown) {

work = WaitforWork(workQueue);
DoWork(work);

}
}

16THE ARCHITECTURE FOR THE DIGITAL WORLD MPSoC 2004

Multi-tasked application using threads
Example implementation of the video-phone

videophone()
{

Struct {
…

} commonState;

CreateThread(NetworkHandler, commonState);
CreateThread(VideoEncoder, commonState);
CreateThread(VideoDecoder, commonState);
CreateThread(AudioEncoder, commonState);
CreateThread(AudioDecoder, commonState);

while(! Shutdown) {
ProcessesStreams(commonState);

}

KillThreads();
}

17THE ARCHITECTURE FOR THE DIGITAL WORLD MPSoC 2004

Single task parallelisation
Multi-tasking works well until a single task needs
more performance than a single processor
– Not a significant issue if the task is easily

represented by multiple sub-tasks – eg CODEC
– Sub-tasking can be complicated when:

• Represented by a single linear algorithm
– Especially if already set in code !

• Algorithm is a sequence of inter dependent operations

Luckily, looking for parallelism at the software code
block or loop level can simplify these issues
– Splitting iterations of a loop across processors
– Placing separate sections of code on processors

18THE ARCHITECTURE FOR THE DIGITAL WORLD MPSoC 2004

Representing sub-tasks using OpenMP
// Multiply rows of A with vectors of b(i), and stores summed product in c(i)
float multiply_matrix(float A[][], b[], c[])
{

int i, j;

/* Use OpenMP’s managed pool of threads with scoped variables */
#pragma omp parallel shared(A,b,c,total) private(i)
{

/* Loop work-sharing construct - distribute rows of matrix */
#pragma omp for private(j)
for (i=0; i < SIZE; i++) {

for (j=0; j < SIZE; j++)
c[i] += (A[i][j] * b[i]);

/* Update of running total must be serialized */
#pragma omp critical
{

total = total + c[i];
}

} // end of parallel i loop
} // end of parallel construct
return(total); // Matrix-vector total - sum of all c[]

}

19THE ARCHITECTURE FOR THE DIGITAL WORLD MPSoC 2004

Parallelisation of media codec tasks
Effort only required when task needs more
performance than a single processor can provide
Example: MPEG2 decoder
– Sampled from the ARM SMP Evaluation Platform
– Demonstrates utilization of addition processors

2 Threads 4 Threads

20THE ARCHITECTURE FOR THE DIGITAL WORLD MPSoC 2004

Challenges of Symmetric MP…
Difficult to isolate effects of a task from other tasks
– All tasks share the same processors
– OS API often provide affinity and task level

prioritization
Programmer needs to take care not abuse
common memory system
– By requiring too many synchronization points
– By causing data to need to migrate continually

between processors
Hardware must address processing sub-system
bottlenecks
– Around ensuring memory coherency
– Around synchronization between processors

21THE ARCHITECTURE FOR THE DIGITAL WORLD MPSoC 2004

ARM MPCore Hybrid Multiprocessor

Snoop Control Unit (SCU)
I & D

64bit bus
Coherence

Control
bus

Primary
AXI R/W

64-bit
bus

Optional 2nd

AXI R/W
64-bit bus

(Can be used
as NMI)

Interrupt Distributor

Configurable number of
hardware interrupt lines

Private
Peripheral

Bus

Timer

Wdog
CPU

interface

IR
Q

Configurable
between
1 and 4
Symmetric
CPU

Per-CPU
aliased
peripherals

Timer

Wdog
CPU

interface

IR
Q

IR
Q

CPU/VFP

L1 Memory

CPU/VFP

L1 Memory

CPU/VFP

L1 Memory

CPU/VFP

L1 Memory

Timer

Wdog
CPU

interface
Timer

Wdog
CPU

interface

Vector Floating Point
(VFP) is optional

Private Fast
Interrupts (FIQ)

Support for both AMP
and SMP workloads

22THE ARCHITECTURE FOR THE DIGITAL WORLD MPSoC 2004

Conclusions
Embedded open platform MPSoC can’t simply
copy desktop microarchitectures
– Can’t afford the cost of traditional coherency

• Slow system bus used for snooping
• SoC components used for communications

– Needs to put low power consumption above
peak performance

Solution must be programmable by the “open
platform” development team
– Allowing migration of existing code base
– Using a ‘mass-market’ model that can also offer

high levels of processing efficiency

