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• trend
• flexibility

computation
• flexibility becomes more important
• and also more affordable
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• complexity requires scalability

• i.e. multiple cores
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communication
• more IP ⇒ more interconnect
• a similar story…
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"Interconnect and memory organization in SOCs for
advanced set-top boxes and TV,“ K. Goossens et al. in
“Interconnect-Centric Design for advanced SoC and NoC,”
J. Nurmi, et al. (eds), Kluwer, 2004.
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putting it all together

Viper2 (PNX8550) 
• 0.13 µm
• ~50 M transistors
• ~100 clock domains
• more than 70 IP blocks

QVCP2L

TriMedia
#2

TriMedia
#1

MBS

TDCS

QVCP5L
MDCS

VIP

MSP

MIPS

MPEG

MCU



7

Kees Goossens, MPSOC 2004-06-08

DCS-CTR

CLOCKS

GLOBAL

RESET

TM1-DBG

MIPS
PR4450

M-IPC

M-GIC

MBS1

QVCP1

QVCP2

VMPG

MSP2

VLD

MSP1

S

S

S

S

S

S

S

TM32

R
W

R
W

TM1-IPCS

TM2-IPC

SPDIO

S

AIO1

AIO2

AIO3

GPIO

TUNNEL

M
S
M
S
M
S

M
S
M
S
M
S

DE

IIC1

SMC2

USB

IIC3

SMC1

S

R
W

R
W

S

S

S

S

S

S

MS

M
S

S

RW

TM32

DCS-SEC

S

UART1 S

TM2-DBG IIC2

PCI/XIOM
S

S

S

S

S

S

S

PMA-ARBS

PMA-SECS

PMA-MONS

EJTAG

BOOT

M
S
M
S

R
W

R
W
R
W

MBS2 SR
W

DVDD SR
W

QTNR S

VIP1

VIP2 S

SW

W

EDMA SR
W

VPK

TSDMAS

SR
W

W

R
W

R

R

R
W

R
W
R
W

R
W

R
W

R
W
R
W
R
W
R
WR

W
R
W

R
W

M-Gate

C-Bridge

TM1-GIC

S

TM2-GICS

DENCS

DCS-SECS DCS-CTRS

T-DCSM-DCS

PMA

RW

Memory
Controller

RWMSMS

UART2 S

UART3 S

unpredictability

• the challenge of
designing these
SOCs

$

mem
ctrl rtosrtos

$

PMA

rtos

DCS

gate

bridge

• many resources

• many arbiters

• interference

• what is the resulting

global behaviour?

DCS
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why care about predictable systems?

• applications need it & users expect it
– real time, embedded, safety critical

• ease design /  lower TTM
– enables compositional design style
– enables compositional verification

• functional & performance verification
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the scene

• SOC consists in resources
– computation, storage, communication

• application uses resources
– tasks, buffers, connections
~> computation, storage, communication

• where does the unpredictability come from?
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the problem

1. resource usage is unpredictable
– algorithmically difficult, data dependent

2. resources are unpredictable
– DRAM, cache, power management, wires & gates

3. resources are shared by multiple users
– require arbitration between users

4. users use multiple resources
– dependencies & interference between arbiters, 

which possibly have different optimisation criteria

U1 U2

R1 R2

…

…
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best effort approach

• accept variable performance of resources
• implement an arbiter per resource
• accept interference

• simulate system specification against monolithic implementation
• fix problems that you find (by tweaking arbiters, or increasing resources)

• overdimensioning to be “on the safe side”
• no resource management

implementation

specification
prove

NOC + mem controllers + CPUs + …
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(quality of) service concepts

• services
– abstract (simple) view on implementation
– simplify reasoning about resource usage

• guarantees
– enable stronger (easier) reasoning / verification / analysis
– enable compositional reasoning

• quality of service
– reduce resource over-reservation
– increase efficiency

abstract

services

resource

independent 

services

resource

services

resource
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(quality of) service concepts

• services
– abstract (simple) view on implementation
– simplify reasoning about resource usage

– hide internal dynamism & arbitration
• offer 10 MB/s, hide contention & congestion in NOC, DRAM
• offer 10 MIPS, hide RTOS & scheduling on CPU
• offer performance level, hide calibration, voltage & frequency scaling
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(quality of) service concepts

• services
– hiding too much may make resource usage inefficient
– services & implementation must be matched

• e.g. don’t offer rate-based throughput with TDMA
• higher-level (better) services cost more

NOC mem ctrl⇔NOC mem ctrl

abstract

services

resource

abstract

services

resource
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(quality of) service concepts

• service for unpredictable resources
– resources with (algorithmic) performance of resource: 

• modify algorithm
– DRAM: ok
– cache: use as scratch pad
– power management: ok

– calibrate variable (hardware) performance of resource

time
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(quality of) service concepts

• guarantees
– enable stronger (easier) reasoning / verification / analysis

• “your data may arrive” vs. “your data will always arrive in 100ns”
• stronger assumptions (services) ease proving the specification

– usually entail resource reservation & management

– makes IP/subsystems
independent of rest of system

specification

verify

comm
services

NOC

storage
services

mem
control

independent
implementations
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(quality of) service concepts

• guarantees
– enable compositional reasoning

• proofs of independent resources/sub-implementations are independent
• “assume/guarantee” reasoning

– must reason about all the different services
• preferable using a common model

e.g. (synchronous) data flow (SDF)

assume

guarantee

specification

verify

comm
services

NOC

storage
services

mem
control

independent
verification 

use e.g. SDF here
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(quality of) service concepts

• quality of service
– renegotiation for variable resource usage

• reduce resource over-reservation
• increase efficiency

– alternatively, use multiple service classes
• differentiated services, guaranteed & best-effort

time

us
ag

e

reconfiguration

worst-case usage

running-average usage

instantaneous usage / demand / load

negotiated usage
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the solution

1. resource usage is unpredictable
use QoS to characterise resource usage

2. resources are unpredictable
use calibration & predictable design

3. resources are shared by multiple users
use resource management & services

4. users use multiple resources
concerns are separated through guaranteed services
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so, is predictability just an illusion?

• unpredictable resource usage
– algorithms

• worst-case is ok for many audio/video applications
• reconfigure between steady states

– we’re looking into (synchronous) data flow (SDF)
• worst-case execution times enable system-level analysis

time

lo
ad

reconfiguration

worst-case load

running average load

instantaneous load

negotiated load
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just an illusion?

• unpredictable resources
– DRAM can be made predictable
– process variation can be dealt with by calibration
– power management: use calibration & make predictable
– cache: not easy

• use as local memory 
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just an illusion?

• resource sharing / arbitration
– for each service / interface
– pick an arbiter that you can abstract well (e.g. TDMA, RR)

• also to get good implementation-service match

abstract

subspec

subimpl

service

arbiter

⇔

⇔
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just an illusion?

• multiple resources / interference
– all services must work / be analysable together

• e.g. NOC & RTOS services
• use e.g. SDF as the common model to reason about services

specification
use e.g. SDF here

service

arbiter

subspec

subimpl
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concrete example

• Æthereal network on chip
– decouple IP implementations through

separation of computation & communication

– focussed on guaranteed communication services
– also offer best effort for high resource utilisation

– fast performance verification of communication
– decouple interconnect & IP verifications
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foundations of the Æthereal flow

• parametrised building blocks
– router

• arity, buffer sizes
– network interface (NI)

• slot table size
• #ports & their type
• #connections per port
• buffer sizes per connection

• they can be flexibly
– instantiated
– connected
– programmed
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IP

IP

IP

IP

IP

IP IP

IP IP

IPIP IP

IP

IP

NI1

NI0
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NI



26

Kees Goossens, MPSOC 2004-06-08

Æthereal NOC design flow

fast automatic generation and verification
guaranteed performance without simulation

simplifies back-end flow
complies with & enhances platform

• compliant / backward compatibility
• future proof

quickly verify applications on chip
run-time re-configurable

• like any IP, using memory-mapped IO

• NOC dimensioning
⇓

• NOC configuration
⇓

• NOC verification
⇓

• NOC simulation



27

Kees Goossens, MPSOC 2004-06-08

conclusions

• trend towards multiple shared resources
• as a result

– increased arbitration and interference
– difficult to check if system meets its (RT) specification

• guaranteed services and QoS are essential for
– compositional system design
– compositional (performance) verification

• predictable systems require QoS-aware
– resources (underlying hardware: calibration,

storage, computation, communication architectures)
– resource users (especially software)




