
Predictable Systems
Reality, or just an illusion?

Kees Goossens
Philips Research

2

Kees Goossens, MPSOC 2004-06-08

computational efficiency

106

105

104

103

102

101

100
2 1 0.5 0.25 0.13 0.07

computational efficiency
[MOPS/W]

intrinsic
computational

efficiency

time

general-purpose
processor performance

constant complexity

ASICs

domain-specific
processors

versatile
“media processors”

general-purpose
micro-processors

feature size [µm]
equivalently, time

3

Kees Goossens, MPSOC 2004-06-08

• trend
• flexibility

computation
• flexibility becomes more important
• and also more affordable

CPUASIP DSP
VLIWASIC

sea of
DSP

SMP
CMP

• # instances
• scalability

• complexity requires scalability

• i.e. multiple cores

4

Kees Goossens, MPSOC 2004-06-08

communication
• more IP ⇒ more interconnect
• a similar story…

switchbus
(PI)

wires

bus
(AHB)

• trend
• performance

bridged
busses

networks
on chips

• # instances
• scalability

5

Kees Goossens, MPSOC 2004-06-08

bridge

masters

slaves

masters

slaves

m
ultiple A

H
B

communication

multiple PMA

PMA

masters

slave

A
H

B

PI

masters

slaves

masters

slaves

MLA

masters

#
 s

la
ve

s

"Interconnect and memory organization in SOCs for
advanced set-top boxes and TV,“ K. Goossens et al. in
“Interconnect-Centric Design for advanced SoC and NoC,”
J. Nurmi, et al. (eds), Kluwer, 2004.

networks
on chips

masters

slaves

6

Kees Goossens, MPSOC 2004-06-08

DCS-CTR

CLOCKS

GLOBAL

RESET

TM1-DBG

MIPS
PR4450

M-IPC

M-GIC

MBS1

QVCP1

QVCP2

VMPG

MSP2

VLD

MSP1

S

S

S

S

S

S

S

TM32

R
W

R
W

TM1-IPCS

TM2-IPC

SPDIO

S

AIO1

AIO2

AIO3

GPIO

TUNNEL

M
S

M
S

M
S

M
S

M
S

M
S

DE

IIC1

SMC2

USB

IIC3

SMC1

S

R
W

R
W

S

S

S

S

S

S

MS

M
S

S

RW

TM32

DCS-SEC

S

UART1 S

TM2-DBG IIC2

PCI/XIOM
S

S

S

S

S

S

S

PMA-ARBS

PMA-SECS

PMA-MONS

EJTAG

BOOT

M
S

M
S

R
W

R
W

R
W

MBS2 SR
W

DVDD SR
W

QTNR S

VIP1

VIP2 S

SW

W

EDMA SR
W

VPK

TSDMA S

SR
W

W

R
W

R

R

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
WR

W

R
W

R
W

M-Gate

C-Bridge

TM1-GIC

S

TM2-GICS

DENCS

DCS-SEC S DCS-CTRS

T-DCSM-DCS

PMA

RW

Memory
Controller

RWMSMS

UART2 S

UART3 S

putting it all together

Viper2 (PNX8550)
• 0.13 µm
• ~50 M transistors
• ~100 clock domains
• more than 70 IP blocks

QVCP2L

TriMedia
#2

TriMedia
#1

MBS

TDCS

QVCP5L
MDCS

VIP

MSP

MIPS

MPEG

MCU

7

Kees Goossens, MPSOC 2004-06-08

DCS-CTR

CLOCKS

GLOBAL

RESET

TM1-DBG

MIPS
PR4450

M-IPC

M-GIC

MBS1

QVCP1

QVCP2

VMPG

MSP2

VLD

MSP1

S

S

S

S

S

S

S

TM32

R
W

R
W

TM1-IPCS

TM2-IPC

SPDIO

S

AIO1

AIO2

AIO3

GPIO

TUNNEL

M
S
M
S
M
S

M
S
M
S
M
S

DE

IIC1

SMC2

USB

IIC3

SMC1

S

R
W

R
W

S

S

S

S

S

S

MS

M
S

S

RW

TM32

DCS-SEC

S

UART1 S

TM2-DBG IIC2

PCI/XIOM
S

S

S

S

S

S

S

PMA-ARBS

PMA-SECS

PMA-MONS

EJTAG

BOOT

M
S
M
S

R
W

R
W
R
W

MBS2 SR
W

DVDD SR
W

QTNR S

VIP1

VIP2 S

SW

W

EDMA SR
W

VPK

TSDMAS

SR
W

W

R
W

R

R

R
W

R
W
R
W

R
W

R
W

R
W
R
W
R
W
R
WR

W
R
W

R
W

M-Gate

C-Bridge

TM1-GIC

S

TM2-GICS

DENCS

DCS-SECS DCS-CTRS

T-DCSM-DCS

PMA

RW

Memory
Controller

RWMSMS

UART2 S

UART3 S

unpredictability

• the challenge of
designing these
SOCs

$

mem
ctrl rtosrtos

$

PMA

rtos

DCS

gate

bridge

• many resources

• many arbiters

• interference

• what is the resulting

global behaviour?

DCS

8

Kees Goossens, MPSOC 2004-06-08

why care about predictable systems?

• applications need it & users expect it
– real time, embedded, safety critical

• ease design / lower TTM
– enables compositional design style
– enables compositional verification

• functional & performance verification

9

Kees Goossens, MPSOC 2004-06-08

the scene

• SOC consists in resources
– computation, storage, communication

• application uses resources
– tasks, buffers, connections
~> computation, storage, communication

• where does the unpredictability come from?

10

Kees Goossens, MPSOC 2004-06-08

the problem

1. resource usage is unpredictable
– algorithmically difficult, data dependent

2. resources are unpredictable
– DRAM, cache, power management, wires & gates

3. resources are shared by multiple users
– require arbitration between users

4. users use multiple resources
– dependencies & interference between arbiters,

which possibly have different optimisation criteria

U1 U2

R1 R2

…

…

11

Kees Goossens, MPSOC 2004-06-08

best effort approach

• accept variable performance of resources
• implement an arbiter per resource
• accept interference

• simulate system specification against monolithic implementation
• fix problems that you find (by tweaking arbiters, or increasing resources)

• overdimensioning to be “on the safe side”
• no resource management

implementation

specification
prove

NOC + mem controllers + CPUs + …

12

Kees Goossens, MPSOC 2004-06-08

(quality of) service concepts

• services
– abstract (simple) view on implementation
– simplify reasoning about resource usage

• guarantees
– enable stronger (easier) reasoning / verification / analysis
– enable compositional reasoning

• quality of service
– reduce resource over-reservation
– increase efficiency

abstract

services

resource

independent

services

resource

services

resource

13

Kees Goossens, MPSOC 2004-06-08

(quality of) service concepts

• services
– abstract (simple) view on implementation
– simplify reasoning about resource usage

– hide internal dynamism & arbitration
• offer 10 MB/s, hide contention & congestion in NOC, DRAM
• offer 10 MIPS, hide RTOS & scheduling on CPU
• offer performance level, hide calibration, voltage & frequency scaling

abstract

services

resource

of
fe

re
d

pe
rfo

rm
an

ce

renegotiate time

of
fe

re
d

pe
rfo

rm
an

ce

worst-case performance

running-average/managed performance

instantaneous performance

offered/negotiated performance

14

Kees Goossens, MPSOC 2004-06-08

(quality of) service concepts

• services
– hiding too much may make resource usage inefficient
– services & implementation must be matched

• e.g. don’t offer rate-based throughput with TDMA
• higher-level (better) services cost more

NOC mem ctrl⇔NOC mem ctrl

abstract

services

resource

abstract

services

resource

15

Kees Goossens, MPSOC 2004-06-08

(quality of) service concepts

• service for unpredictable resources
– resources with (algorithmic) performance of resource:

• modify algorithm
– DRAM: ok
– cache: use as scratch pad
– power management: ok

– calibrate variable (hardware) performance of resource

time

of
fe

re
d

pe
rfo

rm
an

ce

recalibrate

worst-case performance

running-average performance

instantaneous performance

negotiated performance

16

Kees Goossens, MPSOC 2004-06-08

(quality of) service concepts

• guarantees
– enable stronger (easier) reasoning / verification / analysis

• “your data may arrive” vs. “your data will always arrive in 100ns”
• stronger assumptions (services) ease proving the specification

– usually entail resource reservation & management

– makes IP/subsystems
independent of rest of system

specification

verify

comm
services

NOC

storage
services

mem
control

independent
implementations

17

Kees Goossens, MPSOC 2004-06-08

(quality of) service concepts

• guarantees
– enable compositional reasoning

• proofs of independent resources/sub-implementations are independent
• “assume/guarantee” reasoning

– must reason about all the different services
• preferable using a common model

e.g. (synchronous) data flow (SDF)

assume

guarantee

specification

verify

comm
services

NOC

storage
services

mem
control

independent
verification

use e.g. SDF here

18

Kees Goossens, MPSOC 2004-06-08

(quality of) service concepts

• quality of service
– renegotiation for variable resource usage

• reduce resource over-reservation
• increase efficiency

– alternatively, use multiple service classes
• differentiated services, guaranteed & best-effort

time

us
ag

e

reconfiguration

worst-case usage

running-average usage

instantaneous usage / demand / load

negotiated usage

19

Kees Goossens, MPSOC 2004-06-08

the solution

1. resource usage is unpredictable
use QoS to characterise resource usage

2. resources are unpredictable
use calibration & predictable design

3. resources are shared by multiple users
use resource management & services

4. users use multiple resources
concerns are separated through guaranteed services

20

Kees Goossens, MPSOC 2004-06-08

so, is predictability just an illusion?

• unpredictable resource usage
– algorithms

• worst-case is ok for many audio/video applications
• reconfigure between steady states

– we’re looking into (synchronous) data flow (SDF)
• worst-case execution times enable system-level analysis

time

lo
ad

reconfiguration

worst-case load

running average load

instantaneous load

negotiated load

21

Kees Goossens, MPSOC 2004-06-08

just an illusion?

• unpredictable resources
– DRAM can be made predictable
– process variation can be dealt with by calibration
– power management: use calibration & make predictable
– cache: not easy

• use as local memory

22

Kees Goossens, MPSOC 2004-06-08

just an illusion?

• resource sharing / arbitration
– for each service / interface
– pick an arbiter that you can abstract well (e.g. TDMA, RR)

• also to get good implementation-service match

abstract

subspec

subimpl

service

arbiter

⇔

⇔

23

Kees Goossens, MPSOC 2004-06-08

just an illusion?

• multiple resources / interference
– all services must work / be analysable together

• e.g. NOC & RTOS services
• use e.g. SDF as the common model to reason about services

specification
use e.g. SDF here

service

arbiter

subspec

subimpl

24

Kees Goossens, MPSOC 2004-06-08

concrete example

• Æthereal network on chip
– decouple IP implementations through

separation of computation & communication

– focussed on guaranteed communication services
– also offer best effort for high resource utilisation

– fast performance verification of communication
– decouple interconnect & IP verifications

25

Kees Goossens, MPSOC 2004-06-08

foundations of the Æthereal flow

• parametrised building blocks
– router

• arity, buffer sizes
– network interface (NI)

• slot table size
• #ports & their type
• #connections per port
• buffer sizes per connection

• they can be flexibly
– instantiated
– connected
– programmed

GQ

BQ

IP

IP

IP

IP

IP

IP

IP IP

IP IP

IPIP IP

IP

IP

NI1

NI0

NI3 NI2

NI4

NI5

NI6

R1

R0

R2

R3

NI

26

Kees Goossens, MPSOC 2004-06-08

Æthereal NOC design flow

fast automatic generation and verification
guaranteed performance without simulation

simplifies back-end flow
complies with & enhances platform

• compliant / backward compatibility
• future proof

quickly verify applications on chip
run-time re-configurable

• like any IP, using memory-mapped IO

• NOC dimensioning
⇓

• NOC configuration
⇓

• NOC verification
⇓

• NOC simulation

27

Kees Goossens, MPSOC 2004-06-08

conclusions

• trend towards multiple shared resources
• as a result

– increased arbitration and interference
– difficult to check if system meets its (RT) specification

• guaranteed services and QoS are essential for
– compositional system design
– compositional (performance) verification

• predictable systems require QoS-aware
– resources (underlying hardware: calibration,

storage, computation, communication architectures)
– resource users (especially software)

