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Tradeoffs
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the failure rate of a 
compute node 
doubles with every 
10o C increase in 
temperature 

transistors (and 
silicon) are free 
Gelsinger, Intel, 
DAC’04
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Threats to System Reliability

q Noise:  An unwanted signal or a disturbance in an 
electronic device [Webster] that makes signals 
deviate from their intended or ideal value.
l The deviation is transient (temporary) and intermittent

l Can be proportional (to the signal swing) or independent
- With scaling, noise becomes more significant

q Sources of noise
l Crosstalk
l Process variation
l Power supply noise; Substrate noise; Thermal noise
l Soft errors
l Electromagnetic interference
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emc^2 What is Crosstalk?

q Crosstalk is the interaction (due to capacitive 
coupling) between signals on two different nets. The 
noise on one wire is induced by switching activity on 
neighboring wires.
l Can cause a propagation delay – crosstalk delay
l Can cause a voltage spike – crosstalk glitch

q Capacitive coupling is becoming more significant.
l Wire spacing shrinks faster than wire height
l Clock frequency increases – so delay is a more critical issue

“Crosstalk due to coupling capacitance between adjacent 
interconnect lines, in 0.18 micron and below, has become a 
major performance limiting factor that can cause both noise 
injection and signal timing deviation.”

-Bruno Franzini, STMicroelectronics, SNUG Europe 01.
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Capacitive Coupling Example

Ccouple

Ccouple

When adjacent signals transition in opposite 
directions, the crosstalk delay is longest.

In this case:    Ctotal = 4*Ccouple + Cground

? : 0 -> 1 

? : 0 -> 1 

? : 1 -> 0 



MPSoC’04 Seminars, Province, France July 2004

emc^2
Solutions for Crosstalk

q Crosstalk reduction techniques
l Shielding
l Spacing
l Crosstalk aware signal coding and transmission
l Buffer insertion
l Wire ordering

q Crosstalk tolerance techniques
l On-line detection 
l Bus guardian

q Combination of low power and reliability techniques
l Low-power error resilient encoding
l Adaptive low power transmission schemes
l Adaptive error protection
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q Shielding:  grounded wires between signal wires

l Removes the opposite-direction transitions in adjacent wires
l Drawback – wiring area doubles

Crosstalk Reduction Techniques

q Shielding can be thought of as a data encoding where 
two wires are required for every signal bit
l “1” is encoded as “10” and “0” is encoded as “00”

q Crosstalk aware signal coding:  Are there other 
encodings that can prevent adjacent wires on a bus 
from transitioning in opposite directions?
l Successive codewords cannot allow a rising bit transition

next to a falling bit transition.
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Crosstalk Coding Overhead
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Extra 
bits 

Bits of 
codeword

Bits of 
symbolq Need 40%~50% 

extra bit lines

q Need an encoder 
and decoder

q Designing the encoder and decoder for a large 
number of bits may be impractical; encode n-bit 
blocks and put ground shields between them.
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Encoder EncoderVictor & Keutzer, Bus 
Encoding to Prevent 
Crosstalk Delay , 
ICCAD’01.
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Crosstalk Aware Interconnect

q Instead of 
signal coding 
allow a      
variable  
number of 
transmission 
cycles
depending on 
successive code 
words and the 
resulting 
crosstalk delay 

Lin, et.al., A Crosstalk 
Aware Interconnect with 
Variable Cycle 
Transmission, DATE’04
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Crosstalk Patterns

Patterns (lines k-1, k, k+1)Ctotal of line k

? ? ?? ? ?4*Ccouple + Cground

? ? -? ? -- ? ?- ? ?3*Ccouple + Cground

? ? ?? ? ?? ? ?? ? ?

- ? -- ? -
2*Ccouple + Cground

? ? -? ? -- ? ?- ? ?Ccouple + Cground

? ? ?? ? ?Cground

? - ?? - ?? - ?? - ?

? - -? - -- - ?- - ?

- - -

0

? : 0 -> 1 

? : 1 -> 0 

- : no change

Sotiriadis & 
Chandrakasan,
Reducing bus delay in 
submicron technology 
using coding, ASP-DAC’01

q Different transmission patterns have different Ctotal
and thus have different delay
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Crosstalk Pattern Analysis

The average distributions are 22.64%, 0.05%, 4.06%, 
35.4%, 24.2%, and 13.7% for Group 1 through Group 6.
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Variable Cycle Transmission
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Parameters and Area Overheads
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Performance Results

DYN provides an average of 31.5% performance 
improvement over ORI.
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Energy Consumption Results
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Crosstalk Protection Techniques

q Error detection coding + correction or retransmission

q Different coding methods have different error 
detection capabilities and different energy overheads
l Parity (PAR):  1 extra bit, detects all odd number errors
l Double Error Detection (DED):  (38,32) Hamming code 
l Triple Error Detection (TED):  (38,32) Hamming code + Parity

q Correction versus retransmission
l Retransmission: More delay and more bus transitions but 

simpler codec and more detection capability
l Correction: Smaller delay and fewer bus transitions but more 

complex codec

3.13.52.7TED
2.32.42.1DED
1.01.01.0PAR

TotalDecoderEncoder
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Adaptive Error Protection

q Designing an error protection scheme for the worst 
case scenario may not be energy efficient 
l The more powerful an error protection scheme, the more 

energy it consumes.

l Noise behavior varies over time due to environmental factors 
and operational conditions

→ An adaptive error protection scheme for on-chip 
interconnect that adapts the strength of the error 
detection scheme dynamically based on the noise 
behavior observed.
l Detecting the variation in noise behavior
l Identifying the protection scheme to employ for the 

observed noise behavior
Lin, et.al., Adaptive Error Protection 
for Energy Efficiency, ICCAD’03
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Detecting the Variation of Noise

q Victim bus line
l uses half the 

voltage swing of the 
normal bus lines

l so is more 
susceptible to 
variations in noise

l amplifies the 
number of 
detectable errors

q Detected error rates are an indicator of the 
variation in the noise
l A small variation in detectable error rates indicate huge 

variation in undetectable error rates
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An Adaptive Scheme
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Energy Consumption ( Noise Profile 1)
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State Breakdown (Noise Profile 1)

Cumulative cycles spent in each scheme

PAR and DED are used around 60% of the time.
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What are Soft Errors ?

q Soft Errors (or single event upsets – SEUs) are 
when the internal states of nodes are flipped due 
to excess charge carriers induced primarily by 
external radiation. 
l These errors cause an upset event but the circuit itself 

is not damaged.

G

n+n+
+ - + -+ -

+ -
+-

+ -
+ -

+ -+ -

A particle strike

Current 
release electron & hole pairs 
that are absorbed by source & 
drain altering the state
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Problems Caused by SEU

q Soft Errors can cause problems in different ways
l Change the data value in the caches and memory
l Corrupt the execution of an                                     

instruction due the flip of                                     
data in the pipeline registers

l Change the character of a                                       
SRAM-based FGPA circuit                                              
(Firm Error)

A particle strike

0->11->0
0

l Datapath (combinational) logic SET (Single Event Transient) 
caught by registers/memory
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What causes Soft Errors?

q At ground level, there are three major contributors 
to Soft Errors
l Cosmic Ray induced neutrons cause errors due the charge 

induced by Silicon Recoil
- The upset rate increases with altitude by a factor of 2.36 every

1K meters

l Alpha particles emitted by decaying radioactive impurities 
in packaging and interconnect materials
- plastic packages are the worst - Ceramic, HyperBGA, Flip-chip 

PBGA

l Neutron induced 10B fission which releases a Alpha particle 
and 7Li



MPSoC’04 Seminars, Province, France July 2004

emc^2
Soft Error Rate (SER)

q For a soft error to occur, the collected charge Q at a 
node should be more than Qcritical

l Nflux :    intensity of the neutron flux
l CS :      the area of the cross section of the node
l Qcritical : critical charge necessary for a bit flip (proportional 

to the node capacitance and the supply voltage)
l Qs :      charge collection efficiency (dependent on doping)

)exp(**
s

critical
flux Q

Q
CSNSER −∝

q As CMOS device sizes decrease, the charge stored at 
each node decreases (due to lower nodal capacitance 
and lower supply voltages) but the collection area also 
decreases

q So do SERs go up or down as technology scales?
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8% increase in SER/bit per generation
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Leakage Vs Soft Error Susceptibility
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Supply Scaling Impacts on SEUs

q SEU exposure results (Cypress CY7C128A: 2Kx8 
SRAM)
l 10e7 particles/sec beam intensity
l 5V supply, 1 hour exposure ? 2 single SEU events
l 3V supply, 1 hour exposure ? 13 single and 2 double SEU 

events
Neutron Source (10-
500MeV)

Filters

Shutter
s

Gold Foils

Test Chip

Computer to 
collect data

“Cave”
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SER Solution Approaches

q Physical solutions (may be hard!)
l Shielding?

- No practical absorbent (e.g., approximately > 10 ft of concrete)
l Radiation-hardened cells?

- 10x improvement possible with significant penalty in performance, 
area, cost

- 2-4x improvement may be possible with less penalty
l SOI

q Error detection and correction in memories
l Adds datapath delay for ECC calculations
l Cache scrubbers

q Circuit modifications to increase the node capacitance
l Replace diffusion capacitance with gate capapcitance
l Add active device (restorer inverter + pull-up transistor)
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SER Solution Approaches, con’t

q Spatial redundancy
l Hardware duplication and voting

q Temporal redundancy
l Redundant multithreading

q Software techniques
l ABFT-Algorithmic based fault-tolerance (CRC-Stanford) & 

Abraham (UT)
l Procedure call duplication

- Duplicate instructions but with different registers and variables
- A master original instruction and a shadow instruction in the 

duplicated code
- General purpose registers and memory are partitioned into two 

groups for master and shadow instructions

q ???
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