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Industry trend #1
Proliferation of multiple cores in embedded chips
– Mandated by legacy (hardware & software)
– Aggressive price/performance/power requirements (Si efficiency)

Enabled and compelled by Moore’s Law
– ITRS: 2009, 90nm process, 100M gates = 2500 ARM7 cores
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Industry trend #2

“Software-programmable platforms” proliferating

Many names, many “merchant-market” vendors
– ASSP, DSP, FPGA, PSoC, microprocessor, NPU.. 
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The key multi-core problem

Multi-core devices are notoriously difficult to program
– Mis-match of programming model and underlying hardware
– Reduces efficiency of development (TTM) and deployment (BOM)

Increases existing gap in Semi → OEM supply chain
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“Achievable Efficiency”
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Comparison of Programming Models

Hardware-centric
Efficiency unlocked
– Intractably complex

Multi-core limitations
– Explicit partition

• Unmanageable
• Not scalable

Software-centric
Complexity managed
– Inefficiencies

Multi-core limitations
– Proxy agent or..

• Bottleneck

– ..limited comms
• Restricts partitioning
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Enabling Achievable Efficiency

It all depends on the programming model
– Abstraction and efficiency are normally mutually exclusive

No “one size fits all” programming model for MPSoC
– Different types of user, application, supply chain interaction
– Requires an evolution, not a revolution

Requires the provision of an optimised, yet generic, 
foundation for high-level programming models
– “Threads” are the common currency for concurrent systems
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Thread-based abstraction

Provides
– A suite of thread control and 

synchronisation methods
– access transparency

• the same methods can be used when 
invoking a method from any core to 
any core

– Abstraction from esoteric usage 
models

– location transparency
• it is not necessary for the invoker to 

know where the required processing 
resource resides

– Abstraction from complex system 
topology

A foundation for a unified 
programming model for 
heterogeneous MPSoC

– Basis for 3rd Party OSes

Achievable in software?
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Delivering Achievable Efficiency
SystemWeaverTM – a hardware solution to a software problem
– An on-chip system management technology for complex multi-core 

architectures
– Embodied in hardware yet maintaining flexibility
– Improving efficiency

Integration is minimally disruptive to hardware and software 
legacy
– Hardware: IP core + integration framework - for bus and/or 

distributed architectures
– Software: programming model leverages existing data-path code, 

control code through API compatible with 3rd-party RTOS
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Combining Efficiency & Abstraction
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Top-down design flow

1. Review requirements
2. Explore architecture

– Hardware defined?
– Legacy software/libraries?

3. Define macro-architectural 
partition

4. Define micro-architectural 
partition

5. Create code
6. Compile
7. Link
8. Execute
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Macro-architectural partition

Focussed on 
application-centric 
requirements

Concurrency and 
functional partition 
expressed as 
communicating “tasks”

No limitation on 
granularity of process 
decomposition

G.729

UDP

IPSec

IPv4

MAC

PHY

G.729

UDP

IPSec

IPv4

MAC

PHY

G.729

UDP

IPSec

IPv4

MAC

PHY

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

Tm-5

Tm-4

Tm-3

Tm-2

Tm-1

Tm

Connection #1 Connection #2 Connection #n



9

Copyright © Ignios Ltd. 2004 17

Micro-architectural partitioning

From…
– platform and legacy independent
to…

– platform and legacy specific

Elaborate top-level partition
1. considering predefined hardware 

architecture
2. Considering existing code 

(legacy/3rd party)

May require iteration to reach 
final process/ thread partition
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SystemWeaver

Mapping Software onto Hardware
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Source code

Generation, creation, 
management
– Processing resource 

specific tool flows
• Compatible with 

existing tools
– Greater ROI

• Leveraging existing 
skills

• Supporting legacy 
code and 3rd Party 
libraries

– Intuitive system 
design

• Source level system 
definition files
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Top-down design flow

1. Review requirements
2. Explore architecture

– Hardware defined?
– Legacy software/libraries?

3. Define macro-architectural 
partition

4. Define micro-architectural 
partition

5. Create code
6. Compile
7. Link
8. Execute
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Conclusions

The programming model is the key barrier to 
widespread success for MPSoC
– A balance between efficiency and abstraction

A thread-based programming model could provide a 
means for application developers to realise the full 
potential of multi-core systems
– Needs efficiency
– Needs to be minimally disruptive (hardware, software, 

ecosystem)

Efficiency can be delivered together with abstraction 
when using an optimised, flexible, hardware solution
– Compatible with existing techniques and technologies
– And also providing numerous other benefits

Thank-you


