An efficient thread-based
programming model for multi-core
systems

MPSoC ‘04
Mark Lippett, Ignios Ltd.

Agenda

@ Introduction

® Comparing programming models

® An efficient thread based abstraction layer
@® A pragmatic programming model

® Conclusions

Copvriaht © lanios Ltd. 2004

Industry trend #1

@® Proliferation of multiple cores in embedded chips
— Mandated by legacy (hardware & software)
— Aggressive price/performance/power requirements (Si efficiency)

Multi-core chip

!=“

; Ethernet
lemory

@ Enabled and compelled by Moore’s Law
— ITRS: 2009, 90nm process, 100M gates = 2500 ARM7 cores

Copvriaht © lanios Ltd. 2004

Industry trend #2

® “Software-programmable platforms” proliferating

@ Many names, many “merchant-market” vendors
— ASSP, DSP, FPGA, PSoC, microprocessor, NPU..

Standardization

Fiel

/ Mem% Agra

Stan dA Acm / mabnlny
processors \B 7

a Discretes ;.-
)

‘57 Custom LSlIs/
f?’ TIVtS ASICs
Feulaiol Standardized in
Manufacmrlng

. . Customlzed in
Customization Application

Source:Electronics Weekly, Jan.1991

Copvriaht © lanios Ltd. 2004

The key multi-core problem

@ Multi-core devices are notoriously difficult to program
— Mis-match of programming model and underlying hardware
— Reduces efficiency of development (TTM) and deployment (BOM)

@ Increases existing gap in Semi — OEM supply chain

L . Hardware Platform View
Application View

Multi-core chip

-

System
Connection #1 Connection #2 Connection #n A Ethernet

Copvriaht © lanios Ltd. 2004

“Achievable Efficiency”

(speed of designing) }

High

e Design Efficiency
Low (using technology potential)

Copvriaht © lanios Ltd. 2004 6

Agenda

@ Introduction

® Comparing programming models

® An efficient thread based abstraction layer
@® A pragmatic programming model

® Conclusions

Copvriaht © lanios Ltd. 2004

Comparison of Programming Models

Hardware-centric Software-centric

® Efficiency unlocked @® Complexity managed
— Intractably complex — Inefficiencies

® Multi-core limitations @ Multi-core limitations
— Explicit partition — Proxy agent or..
* Unmanageable + Bottleneck

* Not scalable — ..limited comms
* Restricts partitioning

Copvriaht © lanios Ltd. 2004

Enabling Achievable Efficiency

@ |t all depends on the programming model
— Abstraction and efficiency are normally mutually exclusive

® No “one size fits all” programming model for MPSoC
— Different types of user, application, supply chain interaction
— Requires an evolution, not a revolution

@ Requires the provision of an optimised, yet generic,
foundation for high-level programming models
— “Threads” are the common currency for concurrent systems

Copvriaht © lanios Ltd. 2004

Agenda

@ Introduction

® Comparing programming models

@ An efficient thread based abstraction layer
@® A pragmatic programming model

® Conclusions

Copvriaht © lanios Ltd. 2004

Thread-based abstraction

Algorithm Application 10
Threads Threads Threads @® Provides
— A suite of thread control and
synchronisation methods
— access transparency

+ the same methods can be used when
invoking a method from any core to
any core

— Abstraction from esoteric usage
models

— location transparency

+ itis not necessary for the invoker to
know where the required processing
resource resides

— Abstraction from complex system
topology

A foundation for a unified
programming model for
heterogeneous MPSoC

— Basis for 3rd Party OSes

Achievable in software?

Copvriaht © lanios Ltd. 2004

Delivering Achievable Efficiency

® SystemWeaver™ — a hardware solution to a software problem

— An on-chip system management technology for complex multi-core
architectures

— Embodied in hardware yet maintaining flexibility
— Improving efficiency

@ Integration is minimally disruptive to hardware and software
legacy
— Hardware: IP core + integration framework - for bus and/or
distributed architectures

— Software: programming model leverages existing data-path code,
control code through API compatible with 3d-party RTOS

Copvriaht © lanios Ltd. 2004

Combining Efficiency & Abstraction

Application

Code 3 party

& Legacy
Thread - Libraries
Based

Abstraction
,s:nedung}>
(\ IPC /

Interconnect
Abstraction
Algorithmic Processor
IP IP

Operating
System

Interconnect

Copvriaht © lanios Ltd. 2004

Agenda

@ Introduction

® Comparing programming models

® An efficient thread based abstraction layer
@® A pragmatic programming model

® Conclusions

Copvriaht © lanios Ltd. 2004

Top-down design flow

Review requirements
Explore architecture
— Hardware defined?
— Legacy software/libraries?
Define macro-architectural
partition
Define micro-architectural
partition
Create code
Compile
Link
Execute

Copvriaht © lanios Ltd. 2004

Macro-architectural partition

@ Focussed on

fG 729] TG 7291 TG 72 j> application-centric

requirements

<f ubpP M Sl l @P&b @ Concurrency and

| o functional partition
d IPSecm IPSech IPSeg ? expressed as

communicating “tasks”
q IPv4 ., 1Pv4 ., IPv4 o | IPv4 P
—— ® No limitation on

— e y
d_mac | MAC.| | MAC.p SR praess
CEPHYJLPHY j LPHY oD

Connection #1 Connection #2 Connection #n

Copvriaht © lanios Ltd. 2004

Micro-architectural partitioning

ﬁ From...

— platform and legacy independent

to...
- — platform and legacy specific
Exploration
Elaborate top-level partition
- / 1. considering predefined hardware
Elaboration arChI’[eCture

2. Considering existing code
(legacy/3™ party)

1 May require iteration to reach
igebpliadie final process/ thread partition
oot s o avdvars
Definition Definition
% % Key

Copvriaht © lanios Ltd. 2004

Micro-architectural partition

Processor
Types

Statistic
Output

o

AN

Out ;
Data Available f
Y //}

Classified NoEncode UbPed

Protocol uDP
Classification ——— Termination ——— poiocy b Protocol
— Initiation Initiation

\ s 1/

Encoder Encryption

But how do we map this
efficiently at run-time?

Copvriaht © lanios Ltd. 2004 18

Mapping Software onto Hardware

Synchronisation
Barrier

Data Available

Classified)
Scheduling

NoEncode

Encoded

UDPed

Encrypted

I3
!
I
|
|
|
|
|
|
|
|
|
|
|
I

Copvriaht © lanios Ltd. 2004

Processor Class Processor
Nodes Instance Nodes

Distribution
(=) Cones

Source code

® Generation, creation,
management
— Processing resource
specific tool flows
* Compatible with
existing tools
— Greater ROI
» Leveraging existing
skills
» Supporting legacy
code and 3 Party
libraries
— Intuitive system
design

» Source level system

definition files

Copvriaht © lanios Ltd. 2004

E——j
| ﬂ
Micro-Architectural

v

Syster
Configuration
) 4

SystemWe
Sonfiguration Processor Type Specific Tool Flow
fios ()
I

[y
_—
Relocatable Relocatable
Fil

o Fies
) o0 | A

10

Build process

SystemWeaver CIC++ Assembly CIC++ Assembly Linker
configuration Source Source Header Source Source ‘Command
files (h) and and Files and and File
- Header Header (.h) Header Header (e.g. *Ink)
Files Files Files Files
7 % I % % %

I R I) N B

Assembler

Library
Files
(e.g."a,
*lib)
iy
Relocatable
File
(0)
%

Copvriaht © lanios Ltd. 2004

Top-down design flow

Review requirements
Explore architecture Acacurs

— Hardware defined? -
— Legacy software/libraries? — 1

- - ==
Define macro-architectural
partition
Define micro-architectural

partition
Create code
Compile
Link
Execute

Copvriaht © lanios Ltd. 2004

11

Agenda

@ Introduction
® Comparing programming models

® An efficient thread based abstraction layer

@® A pragmatic programming model
@® Conclusions

Coovriaht © lanios Ltd. 2004

Ecosystem

Application
Code
Operating 3" Party
System &. Leg.acy
Trace & Thread - Libraries
Debug Based Architectural
Aggregation Abstraction . Exploration

- Memo
Visualisation Allocation &

Capability Collection

Real-time . Field
Characterisation SChe{;‘gng 8 Reconfigurable

Hardware
Debug Power

Capability Management

Interconnect Co-processor
Abstraction Generation
Algorithmic Processor

IP IP

Abstract
IP Verification
Suites

Interconnect

Coovriaht © lanios Ltd. 2004

12

Conclusions

® The programming model is the key barrier to
widespread success for MPSoC
— A balance between efficiency and abstraction

® A thread-based programming model could provide a
means for application developers to realise the full
potential of multi-core systems
— Needs efficiency

— Needs to be minimally disruptive (hardware, software,
ecosystem)

@ Efficiency can be delivered together with abstraction
when using an optimised, flexible, hardware solution
— Compatible with existing techniques and technologies
— And also providing numerous other benefits

Copvriaht © lanios Ltd. 2004

Thank-you

13

