
1

An efficient thread-based
programming model for multi-core

systems

MPSoC ‘04
Mark Lippett, Ignios Ltd.

Copyright © Ignios Ltd. 2004 2

Agenda

Introduction
Comparing programming models
An efficient thread based abstraction layer
A pragmatic programming model
Conclusions

2

Copyright © Ignios Ltd. 2004 3

Industry trend #1
Proliferation of multiple cores in embedded chips
– Mandated by legacy (hardware & software)
– Aggressive price/performance/power requirements (Si efficiency)

Enabled and compelled by Moore’s Law
– ITRS: 2009, 90nm process, 100M gates = 2500 ARM7 cores

System Interconnect

DES
Engine Ethernet

RISC DSP
RISC DSP

System
Memory

DSP

Multi-core chip

DMA
Engine

Copyright © Ignios Ltd. 2004 4

Industry trend #2

“Software-programmable platforms” proliferating

Many names, many “merchant-market” vendors
– ASSP, DSP, FPGA, PSoC, microprocessor, NPU..

3

Copyright © Ignios Ltd. 2004 5

The key multi-core problem

Multi-core devices are notoriously difficult to program
– Mis-match of programming model and underlying hardware
– Reduces efficiency of development (TTM) and deployment (BOM)

Increases existing gap in Semi → OEM supply chain

Application View
Hardware Platform View

G.729

UDP

IPSec

IPv4

MAC

PHY
Connection #1 Connection #2 Connection #n

G.729

UDP

IPSec

IPv4

MAC

PHY

G.729

UDP

IPSec

IPv4

MAC

PHY

…
System Interconnect

DES
Engine Ethernet

RISC DSP
RISC DSP

System
Memory

DSP

Multi-core chip

DMA
Engine

Copyright © Ignios Ltd. 2004 6

“Achievable Efficiency”
Abstraction Level
(speed of designing)

High

Low

Low High
Design Efficiency
(using technology potential)

Perfection!

4

Copyright © Ignios Ltd. 2004 7

Agenda

Introduction
Comparing programming models
An efficient thread based abstraction layer
A pragmatic programming model
Conclusions

Copyright © Ignios Ltd. 2004 8

Comparison of Programming Models

Hardware-centric
Efficiency unlocked
– Intractably complex

Multi-core limitations
– Explicit partition

• Unmanageable
• Not scalable

Software-centric
Complexity managed
– Inefficiencies

Multi-core limitations
– Proxy agent or..

• Bottleneck

– ..limited comms
• Restricts partitioning

5

Copyright © Ignios Ltd. 2004 9

Enabling Achievable Efficiency

It all depends on the programming model
– Abstraction and efficiency are normally mutually exclusive

No “one size fits all” programming model for MPSoC
– Different types of user, application, supply chain interaction
– Requires an evolution, not a revolution

Requires the provision of an optimised, yet generic,
foundation for high-level programming models
– “Threads” are the common currency for concurrent systems

Copyright © Ignios Ltd. 2004 10

Agenda

Introduction
Comparing programming models
An efficient thread based abstraction layer
A pragmatic programming model
Conclusions

6

Copyright © Ignios Ltd. 2004 11

Thread-based abstraction

Provides
– A suite of thread control and

synchronisation methods
– access transparency

• the same methods can be used when
invoking a method from any core to
any core

– Abstraction from esoteric usage
models

– location transparency
• it is not necessary for the invoker to

know where the required processing
resource resides

– Abstraction from complex system
topology

A foundation for a unified
programming model for
heterogeneous MPSoC

– Basis for 3rd Party OSes

Achievable in software?

RTOS

I/O
Threads

BIOS

Algorithm
Threads

Application
Threads

Thread-Based Abstraction Layer

RTOS

DSP RISC I/O

IO
Threads

Multi-core chip

Interconnect Layer

Copyright © Ignios Ltd. 2004 12

Delivering Achievable Efficiency
SystemWeaverTM – a hardware solution to a software problem
– An on-chip system management technology for complex multi-core

architectures
– Embodied in hardware yet maintaining flexibility
– Improving efficiency

Integration is minimally disruptive to hardware and software
legacy
– Hardware: IP core + integration framework - for bus and/or

distributed architectures
– Software: programming model leverages existing data-path code,

control code through API compatible with 3rd-party RTOS

7

Copyright © Ignios Ltd. 2004 13

Combining Efficiency & Abstraction

Interconnect

Algorithmic
IP

Processor
IP

Application
Code 3rd Party

& Legacy
Libraries

Operating
System Thread

Based
Abstraction

Scheduling &
IPC

Interconnect
Abstraction

Copyright © Ignios Ltd. 2004 14

Agenda

Introduction
Comparing programming models
An efficient thread based abstraction layer
A pragmatic programming model
Conclusions

8

Copyright © Ignios Ltd. 2004 15

Top-down design flow

1. Review requirements
2. Explore architecture

– Hardware defined?
– Legacy software/libraries?

3. Define macro-architectural
partition

4. Define micro-architectural
partition

5. Create code
6. Compile
7. Link
8. Execute

Architectural
Exploration

Relocatable
Files

(e.g. *.o)
Relocatable

Files
(e.g. *.o)

Relocatable
Files

(e.g. *.o)

Secondary Processor Class Tool Flow

Secondary Processor Class Tool Flow

Secondary Processor Class Tool Flow

MRD

Macro-
Architectural

Legacy
Code

Platform
ASSP

Processor Type Specific Tool Flow

Relocatable

Files
(e.g. *.o)

Relocatable

Files
(e.g. *.o)

Linker and Locator

Executable
Image

(e.g. *.elf,
*.coff, *.hex,

*.out))

Build Files

Build System

Micro-Architectural
Micro-Architectural

Micro-Architectural
Micro-Architectural

Copyright © Ignios Ltd. 2004 16

Macro-architectural partition

Focussed on
application-centric
requirements

Concurrency and
functional partition
expressed as
communicating “tasks”

No limitation on
granularity of process
decomposition

G.729

UDP

IPSec

IPv4

MAC

PHY

G.729

UDP

IPSec

IPv4

MAC

PHY

G.729

UDP

IPSec

IPv4

MAC

PHY

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

Tm-5

Tm-4

Tm-3

Tm-2

Tm-1

Tm

Connection #1 Connection #2 Connection #n

9

Copyright © Ignios Ltd. 2004 17

Micro-architectural partitioning

From…
– platform and legacy independent
to…

– platform and legacy specific

Elaborate top-level partition
1. considering predefined hardware

architecture
2. Considering existing code

(legacy/3rd party)

May require iteration to reach
final process/ thread partition

Architectural Exploration

MRD

Exploration

Elaboration

Partition

Legacy/Library
Code

Platform
Hardware

Partition
Definition

Platform
Definition

Key

Process class
Process class implemented
with legacy code
Process class targeted at a
particular class of hardware

Copyright © Ignios Ltd. 2004 18

Encoder

IP
Protocol
Initiation

UDP
Protocol
Initiation

Protocol
Termination

Encryption
Encoder

IP
Protocol
Initiation

UDP
Protocol
Initiation

Protocol
Termination

EncryptionEncoder

IP
Protocol
Initiation

UDP
Protocol
Initiation

Protocol
Termination

Encryption

Micro-architectural partition

Input Output

Data Available

NoEncode

EncodedEncode

UDPed

Out

Statistic

General Purpose
Processor

General Purpose
Processor + ext.

DSP

Ethernet

DMA

EncryptedEncrypt

DES
Engine

Classification

Encoder

IP
Protocol
Initiation

UDP
Protocol
Initiation

Protocol
Termination

Encryption

Classified

Processor
Types

But how do we map this
efficiently at run-time?Connection

#1
Connection

#2
Connection

#3
Connection

#n

10

Copyright © Ignios Ltd. 2004 19

SystemWeaver

Mapping Software onto Hardware

Input

Classification

Protocol
Termination

UDP Protocol
Initiation

IP Protocol
Initiation

Statistics

Encoder

Encryption

Output

DMA

GPP1

GPP2

DSP1

DSP2

DSP3

DES Engine

Ethernet

Distribution
Cones

Processor
Instance Nodes

Synchronisation
Barrier

DMA

GPP2

DSP_Pool

DES Engine

Ethernet

Scheduling
Cones

Data Available

Encode

Out

Terminated
synchronisation
messages

Classified

NoEncode
Encoded
UDPed
Encrypted

Encrypt

Classified
NoEncode
UDPed
Out

Encoded

Initiated
synchronisation
messages.

Encrypted

Task Class
Nodes

Static/Dynamic
Scheduling
Hierarchy

(FIFO, RR, Priority,
WFQ etc)

Load balancing,
pre-emption,

power management,
Time slicing etc.

Processor Class
Nodes

Copyright © Ignios Ltd. 2004 20

Source code

Generation, creation,
management
– Processing resource

specific tool flows
• Compatible with

existing tools
– Greater ROI

• Leveraging existing
skills

• Supporting legacy
code and 3rd Party
libraries

– Intuitive system
design

• Source level system
definition files

Legacy or
Library Code

Relocatable

Files
(e.g. *.o)

Relocatable

Files
(e.g. *.o)

Relocatable

Files
(e.g. *.o)

Secondary Processor Class Tool Flow

Secondary Processor Class Tool Flow

Secondary Processor Class Tool Flow

System

Definition
Files

SystemWeaver
Configuration

SystemWeaver
configuration

files (.h)

Processor Type Specific Tool Flow

Relocatable

Files
(e.g. *.o)

Relocatable

Files
(e.g. *.o)

Micro-Architectural
Micro-Architectural

Micro-Architectural
Micro-Architectural

11

Copyright © Ignios Ltd. 2004 21

Build process
User Created Files

C/C++
Source

and
Header

Files

Assembly
Source

and
Header

Files

Application Software

Linker
Command

File
(e.g. *.lnk)

Preprocessor

Compiler

Assembler

Object
Files
(*.o)

Archiver

Library
Files

(e.g. *.a,
*.lib)

Linker

Relocatable

File
(*.o)

SystemWeaver Source Files

SystemWeaver
configuration

files (.h)

C/C++
Source

and
Header

Files

Assembly
Source

and
Header

Files

SystemWeaver API

System
Definition

Header

Files
(.h)

Copyright © Ignios Ltd. 2004 22

Top-down design flow

1. Review requirements
2. Explore architecture

– Hardware defined?
– Legacy software/libraries?

3. Define macro-architectural
partition

4. Define micro-architectural
partition

5. Create code
6. Compile
7. Link
8. Execute

Architectural
Exploration

Relocatable
Files

(e.g. *.o)
Relocatable

Files
(e.g. *.o)

Relocatable
Files

(e.g. *.o)

Secondary Processor Class Tool Flow

Secondary Processor Class Tool Flow

Secondary Processor Class Tool Flow

MRD

Macro-
Architectural

Legacy
Code

Platform
ASSP

Processor Type Specific Tool Flow

Relocatable

Files
(e.g. *.o)

Relocatable

Files
(e.g. *.o)

Linker and Locator

Executable
Image

(e.g. *.elf,
*.coff, *.hex,

*.out))

Build Files

Build System

Micro-Architectural
Micro-Architectural

Micro-Architectural
Micro-Architectural

System
Definition

Files

SystemWeaver
Configuration

SystemWeaver
configuration

files (.h)

12

Copyright © Ignios Ltd. 2004 23

Agenda

Introduction
Comparing programming models
An efficient thread based abstraction layer
A pragmatic programming model
Conclusions

Copyright © Ignios Ltd. 2004 24

Field
Reconfigurable

Hardware

Co-processor
Generation

Architectural
Exploration

Ecosystem

Interconnect

Algorithmic
IP

Processor
IP

Real-time
Characterisation

Trace &
Debug

Aggregation

Abstract
IP Verification

Suites

Thread
Based

Abstraction

Scheduling &
IPC

Interconnect
Abstraction

Memory
Allocation &
Collection

Power
Management

Visualisation
Capability

Debug
Capability

Application
Code 3rd Party

& Legacy
Libraries

Operating
System

13

Copyright © Ignios Ltd. 2004 25

Conclusions

The programming model is the key barrier to
widespread success for MPSoC
– A balance between efficiency and abstraction

A thread-based programming model could provide a
means for application developers to realise the full
potential of multi-core systems
– Needs efficiency
– Needs to be minimally disruptive (hardware, software,

ecosystem)

Efficiency can be delivered together with abstraction
when using an optimised, flexible, hardware solution
– Compatible with existing techniques and technologies
– And also providing numerous other benefits

Thank-you

