
jan@imm.dtu.dk

Jan Madsen
Kashif Virk, Knud Hansen

Informatics and Mathematical Modelling
Technical University of Denmark

Richard Petersens Plads, Building 321
DK2800 Lyngby, Denmark

System-level Modeling
for Wireless Sensor

Networks

Funded by Hogthrob (STVF 2059-03-0027)

MPSoC 2004 2

Sensor networks?

The Hogthrob project
Developing a sensor network
infrastructure for sow monitoring
Functionalities

Tracking
Detecting heat period
…

Low Cost (~1 €)
Low Energy (2 years lifetime)
Consortium:

DTU, DIKU, KVL
National Committee for Pig Production
IO Technologies

www.hogthrob.dk

The real HOGTHROB

MPSoC 2004 3

sending

receiving

idle

Sensor networks

CS P

CS P

CS P

CS P

CS P

CS P

MPSoC 2004 4

receiving

sending

idle

Sensor networks

CS P

CS P

CS P

CS P

CS P

CS P

MPSoC 2004 5

Sensor node

rtos

battery

cpu radiosensor

sensing
processing

communicating

CS P

MPSoC 2004 6

Sensor node

Ultra low energy
Low flexibility
Ultra low cost (1€)
Small size (1..10 Mtr)
Low clock frequency
CPU/DSP and RF dominated
Limited memory
Hardware/software codesign

rtos

battery

cpu radiosensor

MPSoC 2004 7

Sensor node design

rtos
cpu radiosensor

battery

sensing processing communicating

rtos
cpuasic

sensor

sensor

radio

MPSoC 2004 8

Sensor node: Uni-processor ...

rtos
a

Framework to experiment with
different RTOS strategies
Focus on analysis of timing,
energy and resource sharing

Abstract software model, i.e.
no behavior/functionality
Easy to create tasks and
implement RTOS models
Based on SystemC

MPSoC 2004 9

System model

rtos
a

MPSoC 2004 10

System model

rtos

MPSoC 2004 11

System model

rtos

MPSoC 2004 12

System model

Task messages:
ready

finished

RTOS commands:
run

preemept

Resume

rtos

MPSoC 2004 13

System model - SystemC

pa = new
task("task_a",1,50,3,12,0,ready);

registerTask(pa);

pb = new
task("task_b",2,40,2,10,0,ready);

registerTask(pb);

pc = new
task("task_c",3,30,1,10,0,ready);

registerTask(pc);

rtos
identifier

period
priority

offset
WCET

MPSoC 2004 14

Link model

Aim: Adding tasks without
having to create seperate
communication links
Uses the SystemC master-
slave library
If two tasks send a message
at the same time – they are
executed in sequence, but in
undefined order
Global ”clock” is used to
keep track of time

rtos

clock

MPSoC 2004 15

Task model

r1

r1 = time at which task becomes released (or active)

e1

e1 = worst case execution time (WCET)
d1 = deadline, task should complete before this!

d1s1

s1 = time at which task starts its execution

T1

T1 = period, minimum time between task releases

1

o1 = offset (or phase) for first release

o1

MPSoC 2004 16

Task model

MPSoC 2004 17

Sensor network model

MPSoC 2004 18

Sensor node model

MPSoC 2004 19

Energy modeling

MPSoC 2004 20

Communication example

τ1

sτ2

τ4

rτ3

Send node

Receive node

synch.

allocator

scheduler

synch.

allocator

scheduler

Wireless
Network

τ5

MPSoC 2004 21

Modeling radio communication

bo bo cs cs

Modeling the CSMA protocol

send idleidle

cs
carrier sense

Txp Txp Txp
preamble

Txd Txd Txd Txd Txd
data

CPU

Transeiver

Protocol

Sender:

radio request

reading radio

data readytransmission preparation
tramitting bit

MPSoC 2004 22

CSMA Protocol for sending

idle
back
off

carrier
sense

Tx pre-
amble

Tx
data

send

!send
bo_counter>0

bo_counter==0

!channel clear
channel clear &
cs_counter==0

cs_counter>0

pr_counter>0

pr_counter==0

data_counter>0

data_counter==0

MPSoC 2004 23

Modeling radio communication

cs bo bo cs cs Txp Txp Txp Txd Txd Txd Txd Txd
carrier sense preamble data

CPU

Transiver

Protocol
Sender:

poll idle poll idle poll syn syn Rxd Rxd Rxd Rxd Rxd
poll channel synchronize data

CPU

Transiver

Protocol
Receiver:

MPSoC 2004 24

Sensor network example

MPSoC 2004 25

0us 100us 200us 300us 400us 500us 600us 700us 800us 900us

Node1_Processing_Task

Node1_Receive_Protocol

Node1_Receive_Task

Node1_Send_Protocol

Node1_Send_Task

Node2_Receive_Protocol

Node2_Receive_Task

Node3_Receive_Protocol

Node3_Receive_Task

2 2

11 0 1 0 1 0 1 0 1 0 1 0 1 0

00 0 0 0 0 0 0 0

2 1 3 4 0

4 0

11 0 1 0 1 0 1 0 1 2 3 0 1 0 1 0 1 0 1 0 1 0 1 0

00 0 0 0 0 4 4 4 4 4 0 0 0 0 0 0 0

11 0 1 0 1 0 1 0 1 2 3 0 1 0 1 0 1 0 1 0 1 0 1 0

00 0 0 0 0 4 4 4 4 4 0 0 0 0 0 0 0

Example 1: Simple broadcast

Application task
0 = idle
1 = ready
2 = running
3 = preempted
4 = self-preempted

Sending task
0 = idle
1 = carrier sensing
2 = back-off
3 = transmit preamble
4 = transmit data

Receiving task
0 = idle
1 = polling
2 = synchronize
3 = receive data

MPSoC 2004 26

Example 2: Radio interference

0us 100us 200us 300us 400us 500us 600us 700us 800us 900us

Node1_Receive_Protocol

Node1_Receive_Task

Node1_Send_Protocol

Node1_Send_Task

Node2_Receive_Protocol

Node2_Receive_Task

Node2_Send_Protocol

Node2_Send_Task

Node3_Receive_Protocol

Node3_Receive_Task

Node4_Receive_Protocol

Node4_Receive_Task

Node5_Receive_Protocol

Node5_Receive_Task

11 0 1 0 1 0 1 0 1 2 3 0

00 0 0 0 0 4 4 4 4 4 4 4 4 0

2 1 3 4 0

4 0

11

00

2 1 2 1 2 1 3 4 0

4 0

11 0 1 0 1 0 1 0 1 2 3 0 1 0 1 0 1 0 1 0 1 2 3 0

00 0 0 0 0 4 4 4 4 4 0 0 0 0 0 4 4 4 4 4 0

11 0 1 0 1 0 1 0 1 2 3 0 1 0 1 0 1 0 1 0 1 2 3 0

00 0 0 0 0 4 4 4 4 4 0 0 0 0 0 4 4 4 4 4 0

11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2 3 0

00 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 0

Application task
0 = idle
1 = ready
2 = running
3 = preempted
4 = self-preempted

Receiving task
0 = idle
1 = polling
2 = synchronize
3 = receive data

Sending task
0 = idle
1 = carrier sensing
2 = back-off
3 = transmit preamble
4 = transmit data

MPSoC 2004 27

Example 3: Network routing

MPSoC 2004 28

Sending task
0 = idle
1 = carrier sensing
2 = back-off
3 = transmit preamble
4 = transmit data

Example 3: Routing

Application task
0 = idle
1 = ready
2 = running
3 = preempted
4 = self-preempted

Receiving task
0 = idle
1 = polling
2 = synchronize
3 = receive data

MPSoC 2004 29

Sending task
0 = idle
1 = carrier sensing
2 = back-off
3 = transmit preamble
4 = transmit data

Example 3: Battery shortage

Application task
0 = idle
1 = ready
2 = running
3 = preempted
4 = self-preempted

Receiving task
0 = idle
1 = polling
2 = synchronize
3 = receive data

Node 2 runs out of battery

MPSoC 2004 30

Summary

SystemC based framework to study the dynamic
behavior of a sensor network
Exploring global effects of sensor node design
Example sensor network based on Mica-nodes
and TinyOS from UC Berkeley
Work in progress

Power/energy models for power management
Mobile sensor nodes
Detailed component models

To be used in the Hogthrob project

MPSoC 2004 31

Hogthrob

