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Sensor networks?

The Hogthrob project
Developing a sensor network 
infrastructure for sow monitoring
Functionalities

Tracking
Detecting heat period
…

Low Cost (~1 €)
Low Energy (2 years lifetime)
Consortium: 

DTU, DIKU, KVL
National Committee for Pig Production
IO Technologies

www.hogthrob.dk

The real HOGTHROB
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Sensor node

rtos

battery

cpu radiosensor

sensing
processing

communicating
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Sensor node

Ultra low energy
Low flexibility
Ultra low cost (1€)
Small size (1..10 Mtr)
Low clock frequency
CPU/DSP and RF dominated
Limited memory
Hardware/software codesign

rtos

battery

cpu radiosensor
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Sensor node design

rtos
cpu radiosensor

battery

sensing processing communicating

rtos
cpuasic

sensor

sensor

radio
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Sensor node: Uni-processor ...

rtos
a

Framework to experiment with 
different RTOS strategies
Focus on analysis of timing, 
energy and resource sharing

Abstract software model, i.e. 
no behavior/functionality
Easy to create tasks and 
implement RTOS models
Based on SystemC
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System model

rtos
a
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System model

rtos
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System model

rtos
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System model

Task messages:
ready

finished

RTOS commands:
run

preemept

Resume

rtos
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System model - SystemC

pa = new 
task("task_a",1,50,3,12,0,ready);

registerTask(pa);

pb = new 
task("task_b",2,40,2,10,0,ready); 

registerTask(pb);

pc = new 
task("task_c",3,30,1,10,0,ready); 

registerTask(pc);

rtos
identifier

period
priority

offset
WCET
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Link model

Aim: Adding tasks without 
having to create seperate 
communication links
Uses the SystemC master-
slave library
If two tasks send a message 
at the same time – they are 
executed in sequence, but in 
undefined order
Global ”clock” is used to 
keep track of time

rtos

clock
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Task model

r1

r1 = time at which task becomes released (or active)

e1

e1 = worst case execution time (WCET)
d1 = deadline, task should complete before this!

d1s1

s1 = time at which task starts its execution

T1

T1 = period, minimum time between task releases

1

o1 = offset (or phase) for first release

o1
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Task model
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Sensor network model
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Sensor node model
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Energy modeling
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Communication example

τ1

sτ2

τ4

rτ3

Send node

Receive node

synch.

allocator

scheduler

synch.

allocator

scheduler

Wireless
Network

τ5
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Modeling radio communication

bo bo cs cs

Modeling the CSMA protocol

send idleidle

cs
carrier sense

Txp Txp Txp
preamble

Txd Txd Txd Txd Txd
data

CPU

Transeiver

Protocol

Sender: 

radio request

reading radio

data readytransmission preparation
tramitting bit
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CSMA Protocol for sending

idle
back
off

carrier
sense

Tx pre-
amble

Tx
data

send

!send
bo_counter>0

bo_counter==0

!channel clear
channel clear &
cs_counter==0

cs_counter>0

pr_counter>0

pr_counter==0

data_counter>0

data_counter==0
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Modeling radio communication

cs bo bo cs cs Txp Txp Txp Txd Txd Txd Txd Txd
carrier sense preamble data

CPU

Transiver

Protocol
Sender: 

poll idle poll idle poll syn syn Rxd Rxd Rxd Rxd Rxd
poll channel synchronize data

CPU

Transiver

Protocol
Receiver:
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Sensor network example
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Node1_Receive_Protocol
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Node1_Send_Task

Node2_Receive_Protocol

Node2_Receive_Task

Node3_Receive_Protocol

Node3_Receive_Task

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

11 0 1 0 1 0 1 0 1 0 1 0 1 0

00 0 0 0 0 0 0 0

2 1 3 4 0

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0

11 0 1 0 1 0 1 0 1 2 3 0 1 0 1 0 1 0 1 0 1 0 1 0

00 0 0 0 0 4 4 4 4 4 0 0 0 0 0 0 0

11 0 1 0 1 0 1 0 1 2 3 0 1 0 1 0 1 0 1 0 1 0 1 0

00 0 0 0 0 4 4 4 4 4 0 0 0 0 0 0 0

Example 1: Simple broadcast

Application task
0 = idle
1 = ready
2 = running
3 = preempted
4 = self-preempted

Sending task
0 = idle
1 = carrier sensing
2 = back-off
3 = transmit preamble
4 = transmit data

Receiving task
0 = idle
1 = polling
2 = synchronize
3 = receive data
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Example 2: Radio interference

0us 100us 200us 300us 400us 500us 600us 700us 800us 900us

Node1_Receive_Protocol

Node1_Receive_Task

Node1_Send_Protocol

Node1_Send_Task

Node2_Receive_Protocol

Node2_Receive_Task

Node2_Send_Protocol

Node2_Send_Task

Node3_Receive_Protocol

Node3_Receive_Task

Node4_Receive_Protocol

Node4_Receive_Task

Node5_Receive_Protocol

Node5_Receive_Task
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Application task
0 = idle
1 = ready
2 = running
3 = preempted
4 = self-preempted

Receiving task
0 = idle
1 = polling
2 = synchronize
3 = receive data

Sending task
0 = idle
1 = carrier sensing
2 = back-off
3 = transmit preamble
4 = transmit data
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Example 3: Network routing
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Sending task
0 = idle
1 = carrier sensing
2 = back-off
3 = transmit preamble
4 = transmit data

Example 3: Routing

Application task
0 = idle
1 = ready
2 = running
3 = preempted
4 = self-preempted

Receiving task
0 = idle
1 = polling
2 = synchronize
3 = receive data
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Sending task
0 = idle
1 = carrier sensing
2 = back-off
3 = transmit preamble
4 = transmit data

Example 3: Battery shortage

Application task
0 = idle
1 = ready
2 = running
3 = preempted
4 = self-preempted

Receiving task
0 = idle
1 = polling
2 = synchronize
3 = receive data

Node 2 runs out of battery
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Summary

SystemC based framework to study the dynamic 
behavior of a sensor network
Exploring global effects of sensor node design
Example sensor network based on Mica-nodes 
and TinyOS from UC Berkeley
Work in progress

Power/energy models for power management
Mobile sensor nodes
Detailed component models

To be used in the Hogthrob project
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Hogthrob  


