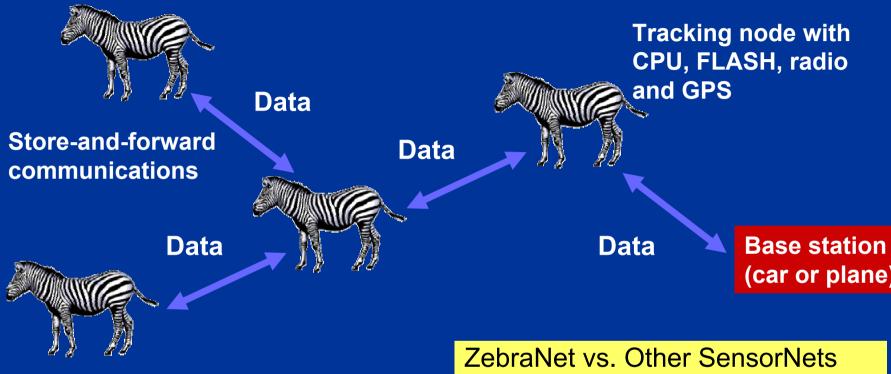

The Princeton ZebraNet Project: Sensor Networks for Wildlife Tracking

Margaret Martonosi

Dept. of Electrical Engineering Princeton University

ZebraNet as Biology Research



- Current technology is limited:
 - VHF Triangulation is difficult & errorprone
 - GPS trackers limit data to coarse sampling and require collar retrieval
- Overall, energy and info retrieval are key limiters
- Peer-to-peer offers opportunity to improve

- Goal: Biologists want to track animals long-term, over long distances
 - Interactions within a species?
 - Interactions between species?
 - Impact of human development?

ZebraNet as Computing Research

Research Questions

- Protocols and mobility?
- **Energy-efficiency?**
- Software layering design?

- All sensing nodes are mobile
- Large area: 100's-1000s sq. kilometers
- "Coarse-Grained" nodes
- **GPS** on-board
- Long-running and autonomous

Biologist's Wishlist ZebraNet Design

Design Issues:

- Lightweight
 Energy-efficient
- Detailed 24/7 archival position logs → GPS-enabled
- Mobile ➡ Wireless
- No fixed base station (no cellular)
 Peer-to-peer routing and data storage
- Restricted human access One year of autonomous operation

Research Questions

- What are suitable protocols for the expected mobility patterns?
- How to model mobility well enough to determine this?
- Can systems of sufficient radio range be designed to operate energy-efficiently enough?
- How can one design software layers that enable long-lived adaptable software and yet are also very energy-efficient?

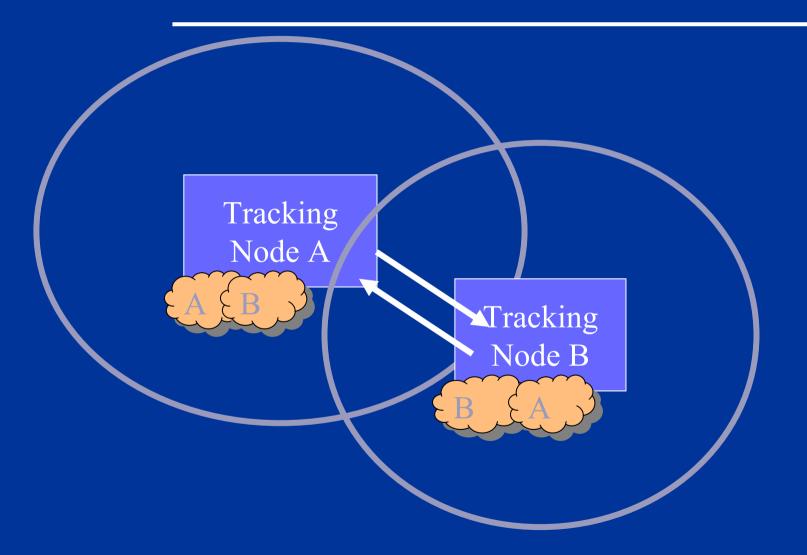
Talk Outline

- Sensor Networks: Intro & OverviewZebraNet
 - Problem statement and system overview
 - Protocols and mobility models
 - Impala middleware
 - Hardware details and energy issues
- Broader view...

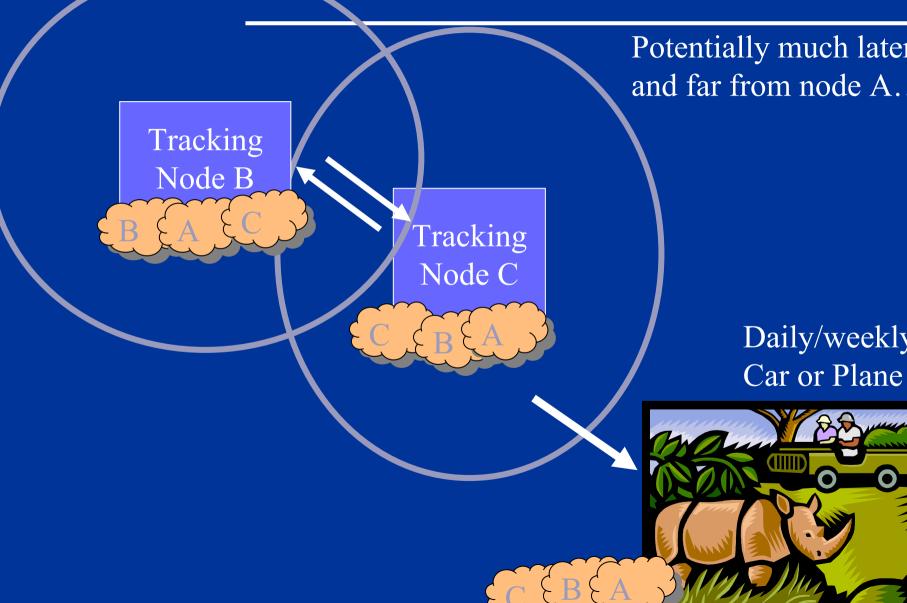
ZebraNet Hardware Design

			Mode	Power				
Microcontroller TI MSP430F149 16-bit RISC 2KB RAM, 60KB ROM	┭	FLASH ATMEL AT45DB041B 4Mbit	32Khz CPU	9.6 mV				
8MHz/32KHz dual clock		78 days data capacity	8MHz CPU	19.32 mV				
Radio MaxStream 902-928MHz 19.2Kbps,		GPS μ-blox GPS-MS1E	8MHz w/ GPS	568 mV				
0.5-1mile transmit range		10-20s position fix time	8MHz + radio xmit	780 mV				
Power supplies, solar r	Power supplies, solar modules, charging circuits							
			radio rcv					

What data to track?


Current:

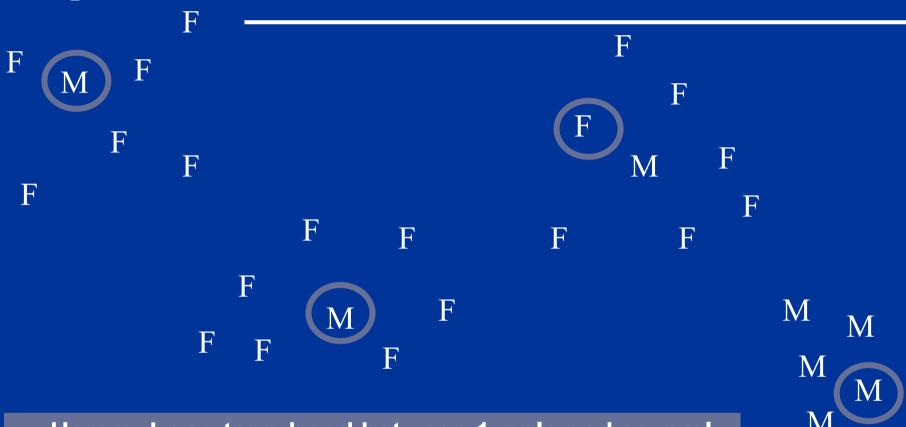
- GPS Position sample every 3 minutes
- Sun/Shade indication
- Detailed information for 3 minutes every hour:
 - Detailed position sampling: standing still or moving? Speed?
 "Step rate"
- ~256 bytes per hour
- 1 "collar-day of info" ~ 6KB
- ~170 collar-days in 8Mbit FLASH chip


Future:

- Head up or down: "bite rate", Ambient temperature, Body temperature, Heart rate, Low res digital images, ...
- Bit rate & storage needs could increase further...

Basic System Operation

Basic System Operation

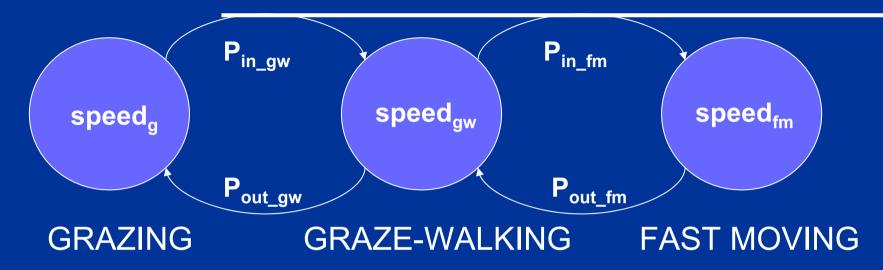


Talk Outline

- Sensor Networks: Intro & OverviewZebraNet
 - Problem statement and system overview
 - Protocols and mobility models
 - Impala middleware
 - Hardware details and energy issues
- Broader view...

Zebra Lifestyles...

M

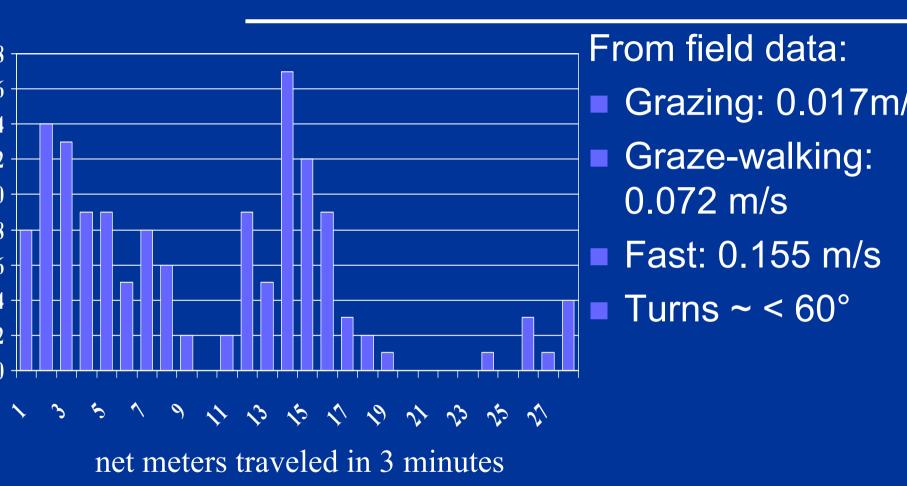


- Harem: Long-term bond between 1 male and several females + offspring
- Herd: Looser coalition of several harems

F

Track 30-50 samples from several harems + bachelors

Zebra Lifestyles II

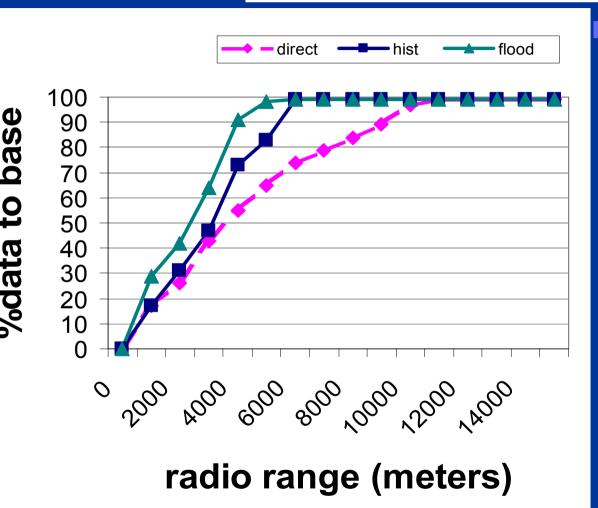

Mostly: herbivores graze Sometimes: graze-walk while looking for greener pastures.

Rare: run to/away from something

Water

- "thirsty" ~once a day
- Model at random time
- Walk to nearest water
- After drink, resume ambient motion

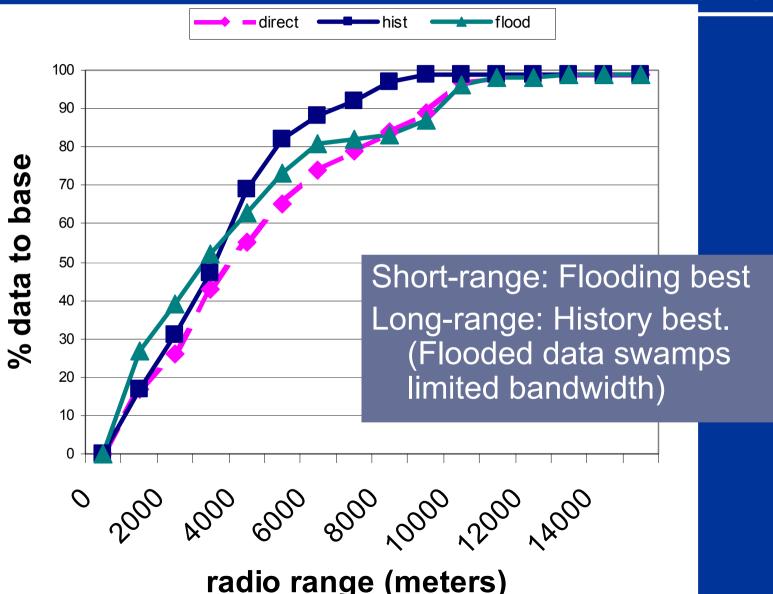
Zebra Movement Speeds

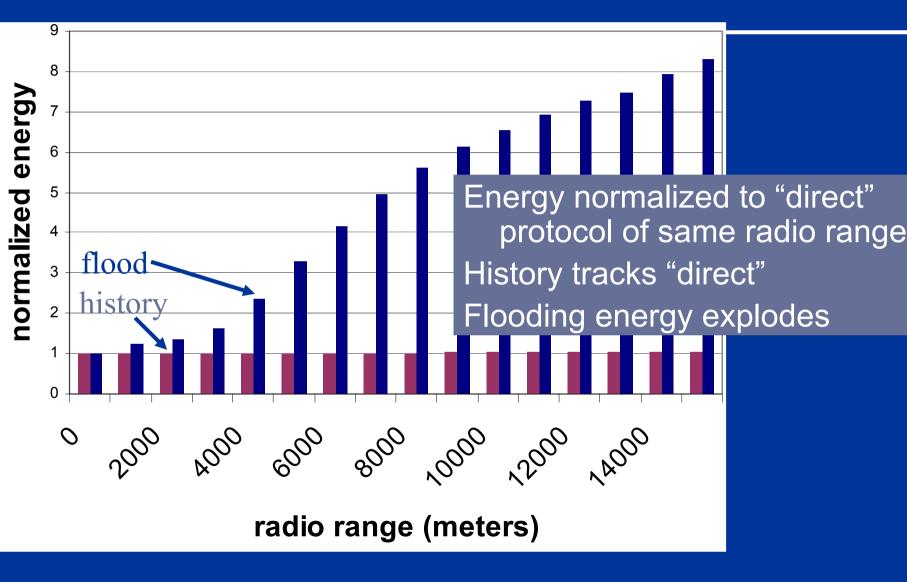

ZebraNet Protocol Evaluations: ZNetSim

- Evaluated communications issues using ZNetSim
 coarse-grained mobile communication simulator using field observations for mobility model
- For results here:
 - 50 collars
 - Tracked across a 20km by 20km area
 - For one month
 - Discovery/Transfer for 30 minutes every 2 hours
 - Base station: daily drive-bys
- Vary radio range to understand trends

Two peer-to-peer protocols evaluated here
 – Flooding: Send to everyone found in peer discovery.

- History-Based: After peer discovery, choose at most one peer to send to per discovery period: the one with best past history of delivering data to base.
- Compared to "direct": no peer-to-peer, just to base
- Success rate metric: Of all data produced in a month, what fraction was delivered to the base station?


Protocol Success Rate: Ideal


Radio range for
100% delivery:
No peer-topeer: ~12km
With Peer-topeer: ~6km

Protocol Success Rate: Constrained

Bandwidth

Protocol Energy Dissipation

Mobility & Protocol Summary

- Radio range key to data homing success: ~3-4km for 50 collars in 20kmx20km area Success rate:
- Ideal: flooding best
- Constrained bandwidth: history best
- Energy trends make selective protocols best

Mobility model key to protocol evaluations

- Fast random moves hurt history
- Chicken and Egg: mobility model is the biology research goal

Talk Outline

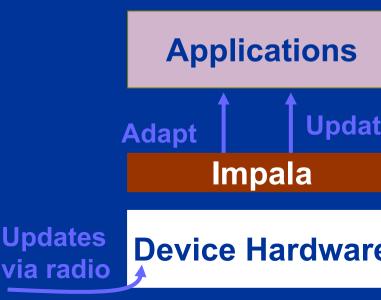
- Sensor Networks: Intro & OverviewZebraNet
 - Problem statement and system overview
 - Protocols and mobility models
 - Impala middleware
 - Hardware details and energy issues
- Broader view...

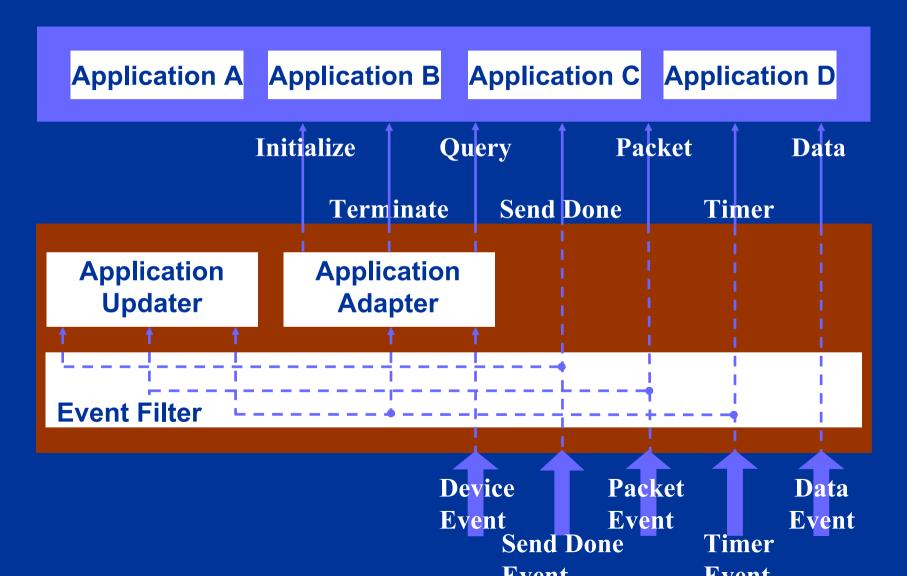
Impala: Middleware Support for Application/Protocol Modularity

A B Aggregate Protocol D A B D D Impala Layer

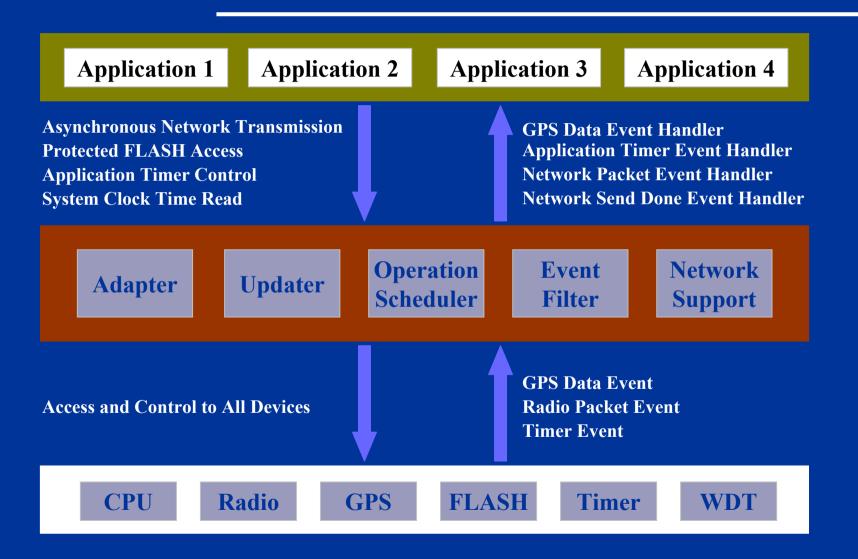
Monolithic Approach

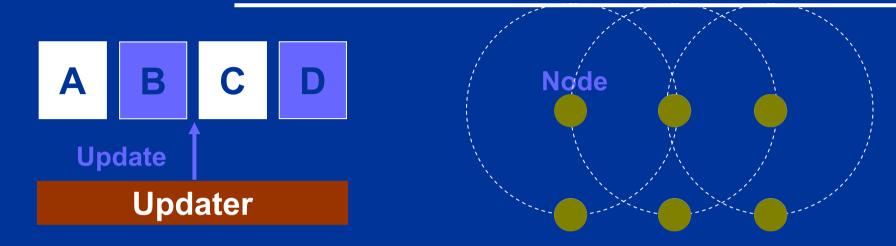
Layered Approach


Goals:


Remote software updates

Middleware adapts, updates apps, protocols dynamically


New protocols can be plugged in at any time


Impala Architecture & Programming Model

Impala Middleware Layer

Impala Code Updates

On a single sensor node

Full network


ZebraNet Characteristics

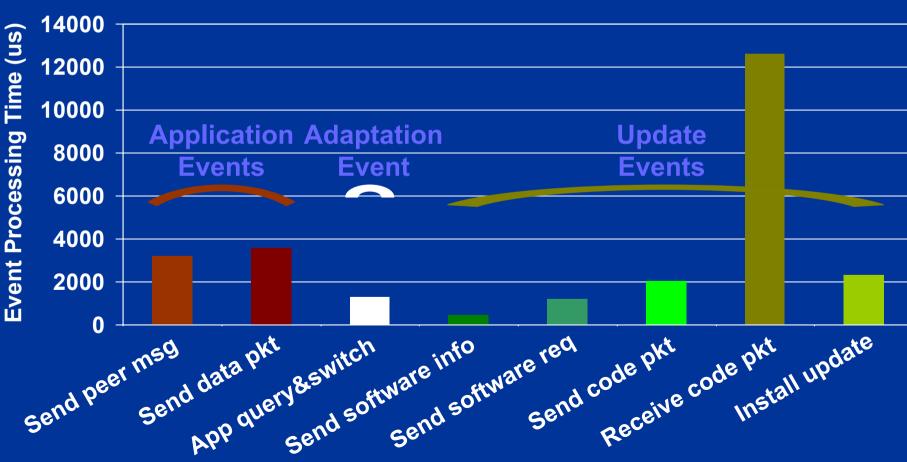
- High Node Mobility
- Constrained Bandwidth
- Wide Range of Updates

Design Implications

- Incomplete Updates
- Updates vs. Execution
- Out of order Updates

On-demand Software Transmission for Remote Software Update

Repeat as needed


Repeat interval backs off if frequent updates not needed

Initially prototyped on HP/Compaq iPAQ Pocket PC Handhelds

- 206MHz CPU, 32MB flash RAM, 16MB flash ROM, running Linux
- Now (as of 2 weeks ago!) also implemented on ZebraNet hardware

Event Processing Time Measurements

Impala events require less time than app events except for receiving a code packet

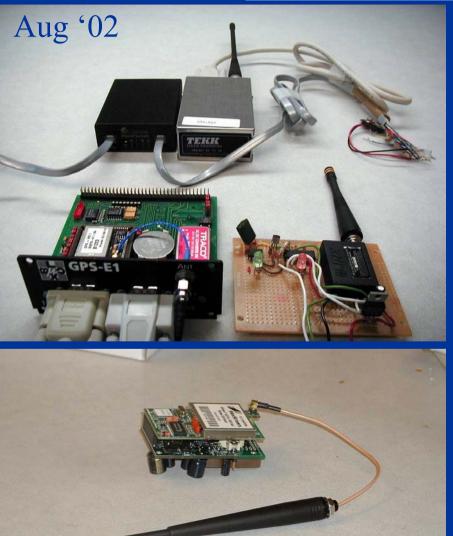
Impala Screen Dumps

Wait for GPS Lock

Look for beers in range

Send data to liscovered beer

	lex -	[Co	omP	ane	l1]															X
File Edit	t O	perat	tions	; M	ark	Со	mmu	unica	tions	Vie	w	Wind	dow	He	lp				- 8	×
0 🖻 🗈		a 1	32	₽	₽	¥	8	ĉ	8	1	2	2	8	2		4				
Send Pane																				_
						I)ata	ι S∈	∍ndin	ıg I	Pane	≥								
Address:	<u>00</u>	<u>01</u> .	<u>02</u>	<u>03</u>	<u>04</u>	<u>05</u>	<u>06</u>	<u>07</u>	<u>08</u>	<u>09</u>	<u>0A</u>	<u>0B</u>	<u>[C</u>	<u>OD</u>	<u>0E</u>	<u> 0F</u>	0123456789ABCDEF			
0000000		00 00										00 00								
0000001					00	00	00	00	00	00	00	00			00					_
Receive Pane 000002C 000002J 000002F 0000031 0000032 0000033 0000034 0000035 0000036 0000037 0000038 0000038 0000038 0000038	52 00 4E 00 53 00 53 00 53 00 4E 00 53 00 00	00 59 00 00 00 59	00 27 00 01 00 00 01 00 27 00 02 00 00	00 0E 00 00 00 00 00 00 00 00 00 00 00 0	00 3B 00 20 00 00 00 37 00 20 00 00	02 57 00 00 00 00 20 00 57 00 00 00 00 00	00 17 00 00 00 00 00 17 00 01 00 00		00 06 00 00 02 00 3B 00 3B 00 0A 00 00	00 33 00 00 00 00 00 00 33 00 00 00 00 0	00 06 00 1B 00 00 00 00 00 04 00 1B 00 00	00 00 EE 00 00 00 00 00 00 00 00 00 00 0	28 CO CO CO CO CO CO CO CO CO CO CO CO CO	15 00 00 00 00 00 15 00 00 00 00 00	03 00 00 00 00 10 00 00 00 00 00 00 00	21 00 00 00 00 00 5E 00 00 00 00 00	(! IJ'.;W;3 SY SY NJ'.7W;3 SY			
For Help, pres	s F1																			


Impala Summary

- To be energy-efficient & long-running, sensor networks need to be modular, adaptable, repairable
- Impala middleware
 - Lightweight "OS" for sensor systems
 - Event handler & low-level services
- Prototype implementations and simulations demonstrate:
 - Low overhead
 - Efficient network reprogramming
 - Code updates

Talk Outline

- Sensor Networks: Intro & OverviewZebraNet
 - Problem statement and system overview
 - Protocols and mobility models
 - Impala middleware
 - Hardware details and energy issues
- Broader view...

ZebraNet Hardware: Time-Lapse View...

Aug '03

Oct '03

Low-Power Hardware Strategies

Lower-power parts – <5mW processor</p> -<500mW GPS Shut-off or sleep mode for idle units Individual high-efficiency switching power supplies for radio, GPS - Low-Drop-Out regulator for micro-controller Multiple clocks – 8MHz for performance-critical tasks; 32kHz for rest Software mode control to further reduce energy

Talk Outline

- Sensor Networks: Intro & OverviewZebraNet
 - Problem statement and system overview
 - Protocols and mobility models
 - Software Layers and Abstractions: Impala
 - Hardware details and energy issues
- Broader view...

CPU design for sensor processing

- Exploit unique application characteristics (highlyparallel, event-based, stream-oriented computation) to create high-perf, low-power computation model
- Analytical approach to mobility models, protocol design

 Zebras vs. autos in NYC vs. military scenarios: Analysis techniques to automate sensible, protocol choices across range of mobilities
 Timekeeping techniques to optimize routefinding &

route prefetch

ZebraNet Accomplishments To Date

- 4 hardware prototyping versions
- Full middleware design (Impala): networking, energy mgmt, remote software update
- 7-collar test deployment in January 2004 in central Kenya
- Early fine-grained data on animal movements
- For more info, see papers... ASPLOS02, PPOPP03, Mobisys04
 ... and our webpage:
- www.ee.princeton.edu/~mrm/zebranet.htm

Summary

ZebraNet as Biology Research:

- Enabling technology for long-range migration research
- Good view of key inter-species interactions

ZebraNet as Engineering Research:

- Early detailed look at mobile sensor net with mobile base stations
- Demonstrates promise of large-extent, long-life sensor networks with GPS
- Detailed look at power/energy concerns
- Novel protocol, middleware, and hardware designs to support research goals
- Sensor Networks Overall
 - Unique characteristics and challenges: Energyconstraints, Mobility, Long-lived hardware/software

The Princeton ZebraNet Project: Mobile Sensor Networks for Wildlife Tracking

ebraNet Folks at Mpala Research Centre, ear Nanyuki, Kenya. January 2004. Grads: Pei Zhang, Chris Sadler, Ting Liu, Ilya Fischoff, Yong Wang, Philo Juang.

Profs: me, Dan
 Rubenstein, Steve Lyon,
 Li-Shiuan Peh, Vince
 Poor.

 Undergrads: Julie Buechner, Chido Enyinna, Brad Hill, Kinari Patel, Karen Tang, Jeremy Wall
 Departments of EE, CS, and Biology at Princeton
 Funded by NSR ITR since 9/2002