Low Power Systems on a Chip – Today's Challenge

Trevor Mudge Bredt Professor of Engineering The University of Michigan, Ann Arbor July 2004

Outline

- Why low power? Trends
- Dynamic power management
- Static power management
- Power and design uncertainty
- Conclusions

Why does power matter?

	1983	1995	2003
	Motorola DynaTAC 8000X	Nokia 232	Nokia 6600
Battery life	0.5h - 1h talk, 8h standby	1h talk, 13h standby	4h talk, 240h (>1 week) standby
Battery	Lead Acid, 500g	NiMh, 100g	Li-Ion, 21g
Weight	800g	205g	125g
Features	Talk for brokers	Talk for the masses	Talk, play, web, snap, video, organize
Price	\$3995	\$500	\$500

- The disappearing battery despite only incremental capacity improvements: the rest of the system has become more power efficient
 - Power has major impact on form factor, features, and cost

First-class design issue: Power

What the end-users really want: supercomputer performance in their pockets...

- Untethered operation, always-on communications
- Driven by applications (games, positioning, advanced signal processing, etc.)

Technology scaling trends are not in our favour:

- Need creative ways of dealing with increasing leakage power
- New processes are expensive
- Diminishing performance gains from process scaling
- Dynamic power remains high
- Solutions need to cut across traditional boundaries (SW / architecture / microarch / circuits)

Technology Trends

Silicon is likely to be the technology of choice for the next 4-5 generations

2 or 3 years between generations

~10 ± 2 Years

after 2015 there may be a paradigm shift to non-Si technology

Consequences for power \rightarrow

Normalized to data from ITRS 2001 roadmap

5/31

Dynamic Power

Voltage scaling – by now a familiar story

 relies on the quadratic law (also helps leakage)
 familiar but not widely implemented
 LongRun 1 & 2, SpeedStep, DPM (dynamic power mgmt/IBM)

The quadratic law implies that parallelism is good only true if leakage is not considered

- Power and Energy consumption trends of a workload running at different frequency and voltage levels.
- DFS: frequency scaling only, DVS: frequency & voltage scaling

Must reduce voltage to save energy and extend battery life

Performance scaling for energy efficiency

Reduced processing rate enables more efficient operation
 Use dynamic voltage scaling (DVS) and threshold scaling (ABB)

Commercial Example: IEM

IEM test chip: AM926EJ-S core

DVS926: Power Analysis

- Room Temp
- Cached workload (Dhrystone)
- CPU core V/I measurements
- Four run-time frequency divisions: 100%, 75%, 50%, 25%
- Boot time PLL settings:
 - 216MHz
 - 228MHz
 - 240MHz
 - 252MHz
 - 264MHz
 - 276MHz
 - 288MHz
 - 300MHz

Trevor Mudge Advanced Computer Architecture Lab The University of Michigan

Static Power

Growing importance

- Reducing activity no longer works
- Voltage scaling still works

Powering off works if state is not an issue

Memory is important

Trevor Mudge Advanced Computer Architecture Lab The University of Michigan

Cache Leakage Power

On-chip caches are becoming bigger

- 2x64KB L1 / 1.5MB L2 for Alpha 21464
- 256KB L2 / 3MB(6MB) L3 for Itanium 2
- Increasing on-chip cache leakage power
 - **feature size shrinking / Vтн decreasing**
 - increasing fraction of leakage power by L2 & L3 caches
 - consuming constant leakage power
 - less frequent access (less dynamic power)
- We can maintain cache performance by trading cache size for power
 - counter intuitive: larger caches consuming less power

Cache Miss Statistics

Optimizing L2 leakage at fixed L1 size

L2 Leakage Saving at Fixed L1 Size

Conclusion

- Cost- effective # of VTH for cache leakage reduction
 - depending on the target access time, but 1 or 2 high VTH's is enough for leakage reduction
- Cache leakage
 - another design constraint in processor design
 - trade-off among delay / area / leakage

L1 Leakage Reduction: Drowsy Caches

Instead of being sophisticated about predicting the working set, reduce the penalty for being wrong

Algorithm:

- Periodically put all lines in cache into drowsy mode.
- When accessed, wake up the line.

Optimize across circuit-microarchitecture boundary:

Use of the appropriate circuit technique enables simplified microarchitectural control.

Requirement: state preservation in low leakage mode.

Drowsy Memory Using DVS

- Low supply voltage for inactive memory cells
 - Low voltage reduces leakage current too!
 - Quadratic reduction in leakage power $P \downarrow \downarrow = I \downarrow \times V \downarrow$

Drowsy Cache Line Architecture

Trevor Mudge Advanced Computer Architecture Lab The University of Michigan

Energy Reduction

- High leakage: lines have to be powered up when accessedDrowsy circuit
 - Without high v_t device (in SRAM): 6x leakage reduction, no access delay.
 - With high v_t device: 10x leakage reduction, 6% access time increase.

Power and Design Uncertainty

Increasing uncertainty with process scaling

- Inter- and intra-die process variations
- Temperature variation
- Power supply drop
- Capacitive and inductive noise

Impact on traditional design:

- Addressing worst-case variation in design requires large safety margins
- Higher energy / lower performance
- Reduced yield
- Difficulty in design closure

Key Observation: worst-case conditions also highly improbable

- Significant gain for circuits optimized for common case
- Efficiency mechanisms needed to tolerate infrequent worst-case scenarios

Reducing Voltage Margins with Razor

Goal: reduce voltage margins with in-situ error detection and correction for delay failures

Proposed Approach:

- Tune processor voltage based on error rate
- Eliminate safety margins, purposely run below critical voltage
 - Data-dependent latency margins
 - Trade-off: voltage power savings vs. overhead of correction

Analogous to wireless power modulation & power/reliability trade-offs in DSP

Razor Flip-Flop Implementation

- Upon failure: place data from shadow-latch in main latch
 - Ensure shadow latch always correct using conservative design techniques
- Key design issues:
 - Maintaining pipeline forward progress
 - Recovering pipeline state after errors
 - Short path impact on shadow-latch

Trevor Mudge Advanced Computer Architecture Lab The University of Michigan

- Meta-stable results in main flip-flop
- Power overhead of error detection and correction

Centralized Pipeline Recovery Control

Cycle: 6

- Once cycle penalty for timing failure
- Global synchronization may be difficult for fast, complex designs

inst6

Razor Prototype Implementation

4 stage 64-bit Alpha pipeline
■ 200MHz expected operation in 0.18µm

technology, 1.8V, ~500mW

Razor overhead:

- Total of 192 Razor flip-flops out of 2408 total (9%)
 - Error-free power overhead:
 - Razor flip-flops: < 1%
 - Short path buffer: 2.1%
 - Recovery power overhead:
 - Razor latch power overhead: 2% at 10% error rate
 - Additional power overhead due to re-execution of instructions

Trevor Mudge Advanced Computer Architecture Lab The University of Michigan

3.3 mm

Error Rate Studies – Empirical Results

18x18-bit Multiplier Block at 90 MHz and 27 C

Multiplier Bit-flip Analysis

- Error rates similar to initial experiment (right)
- Occasional multi-bit flips require more complex error correcting schemes
- Razor overhead much lower than other schemes for full fault coverage

Summary for Razor

Razor benefits:

- Efficient in-situ timing error detection and correction for worstcase timing failures
- Eliminate process, environmental, and safety margins necessary in DVS
- Data dependent speculation for sub-critical voltage operation
- Allow design for common case "better than worst case design"

Other applications:

- Over-clocking for performance improvement (2x shown among hobbyists)
- Clock skew tuning to off-set process / ambient variations
- Automatic adjustment to process variation

Conclusions

Reducing power is the #1 issue facing designers of digital systems

true even if they are not mobile

Dynamic power will continue to be a challenge

- Static power will to although there are partial technological solutions on the horizon
 - high-k dielectrics oxide leakage
 - finFETs subthreshold leakage
 - Feature size reductions dynamic
- Trends that may help reduce power will also introduce uncertainty in the process of manufacturing chips – the next major challenge

