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Why does power matter?

1983 1995 2003
Motorola DynaTAC 8000X Nokia 232 Nokia 6600
Battery life | 0.5h - 1h talk, 8h standby 1h talk, 13h standby 4h talk, 240h (>1 week) standby
Battery | Lead Acid, 500g NiMh, 100g Li-lon, 21g
Weight | 800g 205¢g 125¢
Features | Talk for brokers Talk for the masses Talk, play, web, snap, video, organize
Price | $3995 $500 $500

B The disappearing battery — despite only incremental capacity improvements: the rest of the system has
become more power efficient
B Power has major impact on form factor, features, and cost
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First-class design issue: Power

W What the end-users really want: supercomputer performance in their
pockets...

B Untethered operation, always-on communications
m Driven by applications (games, positioning, advanced signal processing, etc.)

M Technology scaling trends are not in our favour:
B Need creative ways of dealing with increasing leakage power
W New processes are expensive
B Diminishing performance gains from process scaling
B Dynamic power remains high

M Solutions need to cut across traditional boundaries (SW / architecture /
microarch / circuits)
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Technology Trends

| Silicon is likely to be the technology of choice for the next
4-5 generations
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Dynamic Power

M Voltage scaling — by now a familiar story
mrelies on the quadratic law (also helps leakage)

mfamiliar but not widely implemented
® LongRun 1 & 2, SpeedStep, DPM (dynamic power mgmt/IBM)

M The quadratic law implies that parallelism is good
monly true if leakage is not considered
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CMOS Power and Energy

B Power and Energy consumption trends of a workload running at different

frequency and voltage levels.
B DFS: frequency scaling only, DVS: frequency & voltage scaling

Useful for DVS
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f~ (Vg V) / Vg P = Cv2f + Vil o E = [Pat
a~1.3 Avg. power ~ heat Need DVS to save energy
Vil Vi = 0.3

Must reduce voltage to save energy and extend battery life

Trevor Mudge
Advanced Computer Architecture Lab 7/31

The University of Michigan




Performance scaling for energy efficiency

Conventional system Scaled system
100% 100%
Utilization Work Work Work
Work
0% 0%
100% 100%
Power
0% 0%
100% 100%
Energy
0% 0% .
Time Time
B Reduced processing rate enables more efficient operation
m Use dynamic voltage scaling (DVS) and threshold scaling (ABB)
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Commercial Example: IEM

Performance

4 performance
(frequency and
voltage) levels
available in
benchmarked
system

Closest available
performance
level of system

Performance
level requested
by algorithm

ARM Intelligent Energy Manager™

e ————————————
2 seconds
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IEM test chip: AM926EJ-S core
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DVS926: Power Analysis

Room Temp

Cached workload Core power vs CORECLK [Room Temp]
(Dhrystone)
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Static Power

m Growing importance

B Reducing activity no longer works

B Voltage scaling still works

m Powering off works if state is not an issue

B Memory is important
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Cache Leakage Power

B On-chip caches are becoming bigger
W 2x64KB L1/ 1.5MB L2 for Alpha 21464
m 256KB L2 / 3MB(6MB) L3 for Itanium 2

B Increasing on-chip cache leakage power
m feature size shrinking / VTH decreasing
W increasing fraction of leakage power by L2 & L3 caches
® consuming constant leakage power
W less frequent access (less dynamic power)
B We can maintain cache performance by trading cache size for
power
B counter intuitive: larger caches consuming less power
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Cache Miss Statistics
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Optimizing L2 leakage at fixed L1 size

based on fast 16KB L1
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L2 Leakage Saving at Fixed L1 Size

Conclusion

- L1size 16KB 32KB 64KB

for cache leakage
reduction
m depending on the target
access time, but 1 or 2

high VTH’s is enough for
leakage reduction

B Cache leakage

Normalized leakage

10.9%
0.4% 0.7%

W another design
constraint in processor
design

W trade-off among delay /
area / leakage

L2 size

128KB
256KB
512KB
256KB
512KB
512KB
1024KB

1024KB
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L1 Leakage Reduction: Drowsy Caches

Instead of being sophisticated about predicting the
working set, reduce the penalty for being wrong

Algorithm:
» Periodically put all lines in cache into drowsy mode.
 When accessed, wake up the line.

B Optimize across circuit-microarchitecture boundary:

B Use of the appropriate circuit technique enables simplified
microarchitectural control.

B Requirement: state preservation in low leakage mode.
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Drowsy Memory Using DVS

« Low supply voltage for inactive memory cells

— Low voltage reduces leakage current too!

— Quadratic reduction in leakage power ‘o P¥¥ =1 x Vi

supply voltage for normal mode

— |eakage path
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Drowsy Cache Line Architecture

drowsy bit voltage controller

/ ¢ _L drowsy (set)

T DO_ drowsy power line
VDD (1Y) ;’ ::l
SRAMs
VDDLow (0.3Y)
DO_ drowsy word line

Y
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row decoder
word line driver

| I wake up (reset)

N
word line
. word line gate
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Energy Reduction

100%

80% -
60% 1 Leakage 32KB
data
40% | cache
ng! ieaEage
20%
Dynamic Dynamic
0% T
Regular Cache Drowsy Cache

B High leakage: lines have to be powered up when accessed
B Drowsy circuit

m Without high v, device (in SRAM): 6x leakage reduction, no access delay.
m With high v, device: 10x leakage reduction, 6% access time increase.
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Power and Design Uncertainty

B Increasing uncertainty with process scaling
B Inter- and intra-die process variations
B Temperature variation
B Power supply drop

m Capacitive and inductive noise Intra-die variations in ILD thickness

B Impact on traditional design:

m Addressing worst-case variation in design
requires large safety margins

m Higher energy /lower performance
m Reduced yield
m Difficulty in design closure

Thickness (1m)

B Key Observation: worst-case conditions also highly improbable
m Significant gain for circuits optimized for common case
m Efficiency mechanisms needed to tolerate infrequent worst-case scenarios
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Reducing Voltage Margins with Razor

B Goal: reduce voltage margins with in-situ error detection and
correction for delay failures

60 -
,
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L = \ .
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Supply Voltage

m Proposed Approach:
B Tune processor voltage based on error rate
m Eliminate safety margins, purposely run below critical voltage
® Data-dependent latency margins

® Trade-off: voltage power savings vs. overhead of correction

B Analogous to wireless power modulation & power/reliability trade-offs in
DSP
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Razor Flip-Flop Implementation

B Compare latched data with shadow-/atch on delayed clock

clk
: :_I::_:_:_:_:_:_:_:_. .::_:_:_:_:_:_:_:—:_I
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1l Error
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B Upon failure: place data from shadow-latch in main latch

m Ensure shadow latch always correct using conservative design
techniques
W Key design issues:
m Maintaining pipeline forward progress B Meta-stable results in main flip-flop
m Recovering pipeline state after errors W Power overhead of error detection

m Short path impact on shadow-latch and correction
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Centralized Pipeline Recovery Control

Cycle: 8
—{ P IF D EX MEM WB
O (reg/mem)

clock

f recover recover recover | recover

)
|/

v

(Jk

B Once cycle penalty for timing failure

W Global synchronization may be difficult for fast, complex
designs
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Razor Prototype Implementation

B 4 stage 64-bit Alpha pipeline
m 200MHz expected operation in
0.18um
technology, 1.8V, ~500mW

B Razor overhead:

W Total of 192 Razor flip-flops
out of 2408 total (9%)

m Error-free power overhead:
® Razor flip-flops: < 1%
® Short path buffer: 2.1%
B Recovery power overhead:

3.3 mm

M Razor latch power overhead: 2%
at 10% error rate

® Additional power overhead due
to re-execution of instructions
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Error Rate Studies — Empirical Results

18x18-bit Multiplier Block at 90 MHz and 27 C
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Multiplier Bit-flip Analysis

B Error rates similar to initial
experiment (right)

B Occasional multi-bit flips
require more complex error
correcting schemes

B Razor overhead much lower
than other schemes for full
fault coverage
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Summary for Razor

B Razor benefits:

m Efficient in-situ timing error detection and correction for worst-
case timing failures

B Eliminate process, environmental, and safety margins necessary
in DVS

B Data dependent speculation for sub-critical voltage operation
B Allow design for common case — “better than worst case design”

m Other applications:

m Over-clocking for performance improvement (2x shown among
hobbyists)

B Clock skew tuning to off-set process / ambient variations
B Automatic adjustment to process variation
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Conclusions

B Reducing power is the #1 issue facing designers of digital
systems

H true even if they are not mobile
m Dynamic power will continue to be a challenge
W Static power will to although there are partial technological
solutions on the horizon
m high-k dielectrics — oxide leakage
m finFETs — subthreshold leakage
B Feature size reductions — dynamic
B Trends that may help reduce power will also introduce

uncertainty in the process of manufacturing chips — the next
major challenge
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