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The Leakage Challenge (1)The Leakage Challenge (1)
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The Leakage Challenge (2)The Leakage Challenge (2)
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The Other Side of the Story:The Other Side of the Story:
Leakage is good for you!Leakage is good for you!
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Optimal designs have high leakage (ELk/ESw ≈ 0.5)

Must adapt to process variations and activity
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What to do about memory?What to do about memory?
“The data retention voltage (DRV)“The data retention voltage (DRV)
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Calibrating for Process VariationsCalibrating for Process Variations

Module

Most variations are systematic, and can be adjusted for at start-up time 
using one-time calibration!

• Relevant parameters: Tclock, Vdd, Vth
• Can be easily extended to include leakage-reduction and power-down in standby

Test
Module

Vbb

Test inputs
and responses

Tclock

• Achieves the maximum power saving under technology limit
• Inherently improves the robustness of design timing
• Minimum design overhead required over 

traditional design methodology

Vdd



Adaptive Body BiasingAdaptive Body Biasing
Source: P. Gelsinger (DAC04)



Introducing “Power Domains (Introducing “Power Domains (PDsPDs)”)”
Similar in Concept to “Clock Domains”, but extended to include
power-down (really!) and local supply and threshold voltage 
management.

Power source

Active Power NetworkActive Power Network

Load Load Load

• Dynamic voltages for
variable workload 

• Power gating or shut-off for 
leakage control

• Lifetime extension 
exploiting battery attributes 

• Noise management



Introducing “Power Domains (Introducing “Power Domains (PDsPDs)”)”

Domain1

Power Scheduler/
Chip Supervisor

Domain2 Domain3

Who is in charge?

Chip Supervisor (or Chip O/S)
• Maintains global state and 

perspective
• Maintains system timers
• Alerts blocks of important events
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A Case Study A Case Study ——
Protocol Processor for Wireless Sensor NetworksProtocol Processor for Wireless Sensor Networks

Energy 
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DLL (MAC)

App/UI

Network
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RF (TX/RX)

Sensor/actuator
interface

Locationing

Aggregation/
forwarding

User 
interface

Sensor/
actuators
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Chip
Supervisor

Reactive
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Target: < 50 µW average

“Charm” Processor



LocalHW

MAC

DW8051

256
DATA

Interconnect network

ADC

4kB
XDATA

16kB
CODE

PHY

Chip
Supervisor

SIF

SIF
ADC

Serial

GPIO

FlashIF

Serial

Charm ArchitectureCharm Architecture

• Reactive inter- and intra-chip signaling
• Aggressive Use of Power-Domains
• Chip Supervisor Manages Activity

• 1 V operational supply voltage
• 16 MHz Clock Frequency
• Simple processor aided 
with dedicated accelerators



Call a Plumber…This Thing Leaks!Call a Plumber…This Thing Leaks!
Block Area (um2) Logic Memory
Locationing 337990 39.9
DW8051 63235 8.2 2880.0
Interface 6098 0.8
Neighborlist 21282 2.5 13.5
Serial 2554 0.4
NetQ 6296 0.7 108.0
DLL 126846 17.4 13.5
Supervisor 51094 6.4

Total 76.3 3015.0

Est. leakage @1V (uW)

64KB SRAM for SW code and data

30X the target power…just in leakage!!

Leakage vs. Supply Voltage

Hey buddy, 
turn down 

the voltage!
~15X

reduction
Data retention 

voltage

1/15 A * 0.3 V = 98% less leakage power



Gated Power ArchitectureGated Power Architecture

• Vddhi – active mode voltage (nominal)
• Vddlo – standby mode voltage allows retention of state
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VVDD

GND

VDD (1V) 300mVSTBY

Power Switch TilePower Switch Tile

• Tile is easily incorporated into standard design flow
– Cell has same pitch as std. cell library components
– Switch tiles placed prior to other standard cells
– One additional power strap added to power routing step

• Switch design can be independent of block size
– Built in buffer distributes driver circuitry
– Enables creation of a buffer tree during STBY signal routing

Std cell
height

STBY_buf



Delay / Leakage Tradeoff
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Power Switch SizingPower Switch Sizing

• Switch sizing enables trade-off between delay overhead and 
leakage

– Delay scale normalized to un-gated design

– Leakage scale normalized to case when switch size is 50 µm

• Timing slack determines delay requirement
– Control domains (DLL, processor) – tolerant of delay overhead

– Datapath domains (locationing) – longer critical paths, less tolerant of 
delay overhead

H. Qin



System SupervisorSystem Supervisor

• How to control block activation/deactivation?
• System supervisor centralizes power control

– Power subsystem – gates block power rails 
– Clock subsystem – gates block clocks
– Timer subsystem – system time-wheel and wake-up timers
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Power SubsystemPower Subsystem

• Session controller – opens/closes sessions
• Connection table – holds connectivity masks and performs 

port address translation
• Session table – keeps track of open sessions

Src
Decoder

Dest
Decoder

Connection Table

Session Table

Session
Controller

connection maskTo/From
Dispatcher

SYSCLK



Charms SubCharms Sub--blocks and Connectivityblocks and Connectivity
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Power Session TablePower Session Table

Before a power domain can 
communication with a neighbor, it 
must first open a session

Power policy: 
A power domain can sleep if…

1) It has closed all its sessions
2) No other domain has a session open 

with it
3) It wants to go to sleep

A ‘1’ in row i means that power domain i has 
an open a session with another domain

A ‘1’ in column k means that another domain 
opened a session with domain k

A ‘1’ in entry (i, i) is domain i's self-sleep bit

Session Table

can_sleep(i) = reduction_nor(row i) and can_sleep(i) = reduction_nor(row i) and reduction_nor(colreduction_nor(col i)i)
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Clocking SubsystemClocking Subsystem

• Low frequency external clock (32 KHz)
• Generated, switchable, higher frequency clock (16 MHz)
• Two clocks are made phase-synchronous using DLL
• Control signals are generated by system supervisor

RINGOSC_EN
16 MHz

Clock generator

REF_CLK_ROOT

SYS_CLK_ASYNC

REF_CLK_PIN
IBUF (pad)

REF_CLK_ROOT

N-stage chain (N ev en)

SYS_CLK_ASYNC

Clock
tree

Clock
tree

Variable
delay line

Priority encoder +
digital controller

TIMERCLK

SYSCLK

Parallel phase
detector

M-stage
delay line

M

DETECT

REF_CLK_CLOCKMAN

Phase
synchronous

SYS_CLK_ROOT



Timer SubsystemTimer Subsystem

• Centralized system time-wheel
– Blocks schedule wake-up alarms
– Eliminates other large counters so blocks can sleep
– Allows power domains to sleep 

• Very low switching activity factor
– SYSCLK is disabled during deep sleep
– Serial (ripple) comparison starting with MSB

alarm_time

Free-running
Counter

=Alarm Entry #0

Alarm Entry #1

Alarm Entry #N-1

new_alarm

Alarm
Scheduler

beep_beep

Alarm Manager System Time-wheel

To/From
Dispatcher TIMERCLK

SYSCLK



Wireless Sensor Network Protocol ProcessorWireless Sensor Network Protocol Processor

In fab

µWsStandby Power
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8.2 mm2
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A Longer Term Perspective:A Longer Term Perspective:
On chip power generation and conversion networksOn chip power generation and conversion networks
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Summary and PerspectivesSummary and Perspectives

• Active and static power 
management is leading to a 
fundamental change in the 
concept of power distribution 
on a chip

• Power domains locally 
manage and trade-off 
performance, leakage and 
process variance

• System supervisors giving 
new meaning to the term OS

• Towards “PGE on a chip”


