Embedded processors in FPGA's

Actel

Dr.-Ing. Yankin Tanurhan Sr. Director Applications & IP Solutions

Actel Company Overview

I Established FPGA Supplier

- First product shipped 1988
- \$150 M in sales in 2003
- 53 consecutive quarters of Pro Forma profitability
- Strong balance sheet \$149M cash, no debt
- 26% R&D spending
- More than 500 employees
- Fabless company
- #1 Flash FPGA supplier
- #1 Antifuse FPGA supplier

Actel's new 157,000 ft² WorldWide Headquarters in Mountain View, Calif.

The Nonvolatile FPGA Company

Agenda

- Who are we?
- Industry Trends
- Reconfigurable Computing and Target Applications
- Platform
- Design and Development Methodology
- **Summary**

Actel Strategy & Target Markets

Actel

Actel's Key Advantages

Security

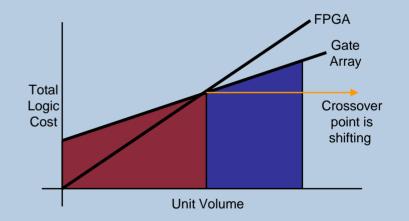
 Tamper-proof, high security, FPGAs prevents reverse engineering, cloning, and over-building

Power

No power-up spike or configuration power, Lowest total system power

Immune to Firm Errors - High Reliability

All products immune to neutron induced configuration errors


Total System Cost

Single chip solution, live at power-up, lowest total system cost

Why is FPGA Winning?

Product life cycles shortening

- FPGA reduces development cycle
- FPGA reduces development cost
- Popularity of reconfigurable systems
 - FPGA allows field upgrade
- Increasing FPGA densities
- Lessening process disadvantage
 - FPGA is a technology driver for independent foundries

Actel

Reconfigurable Computing

Compute by building an application specific computation circuit rather than executing instructions on a general purpose processor

Efficient approach for long running or streaming computations

- Signal and image processing
- Cellular telecommunication and network processing
- Cryptography
- Pattern matching/recognition
- Neural and automata networks

RC Fabric options

Coarse-Grained RC fabric

- Array of processors, local storage and fast communication
- Most of the players terminated
 - MorphICs, Chameleon etc.

FPGA based RC

- Programmable fabric that can be dynamically or partially reconfigured
- Past 10 years growth of FPGA speed and density exceeds that of CPU

FPGA + CPU based RC

- CPU as HardlP
 - Physically embedded predefined CPU, not configurable on-chip bus, potential problems with cache and memory management
- CPU as SoftIP
 - Choice of the right architecture or architecture combination as needed

Some Performance Results

FUNCTION	Fastest DSP Processor Available	Just FPGA State of the art
FIR Filter - 256 Taps, Linear phase 16-bit data/coefficients	9.3 MSPS fclk=600MHz	300 MSPS fclk=300MHz
Complex FFT – 1024 point, 16-bit	10μs fclk=600 MHz	1μs fclk=150 MHz
Viterbi Decoding Throughput	500 channels at 7.95 kbps for a total of 3.9 Mbps	~ 155 Mbps
Reed-Solomon Decoding Throughput	4.1 Mbps fclk=600 MHz	10 Gbps fclk=85 MHz

What's Happening in SOC ?

All logic suppliers (ASIC/ASSP/PLD) are tending toward SOC devices that are specialized for a few applications and targeted toward a small group of customers

Market share is being concentrated

- Leverage customer relationships to gain system expertise
- Large investment needed in IP in order to meet SOC specifications
- Market share brings economy of scale in unit price

Time to market is shrinking

Revenue and profit impact from delayed entry is immense

Development costs are exploding

- Mask sets cost
- Complexity of design

Design with the Traditional MCU

Traditional MCUs limited to "standard" designs

- Fixed core and peripherals are cost effective and programmable
- But, they are often missing peripherals that add board cost

ASICs are expensive and take a long time

- Mask and probe NRE cost often over \$1M (more for design NRE)
- Even with "design reuse", seems like re-inventing the wheel
- After an 18- month development cycle, market opportunity gone and company is left with specific inventory

Designers need custom parts on demand

Why Soft IP ?

- Opportunity to optimize the array according to applications requirements and domain of computation
 - Whatever choice you make it will be wrong for some situation !
- Reduction in power, area and cost
 - Adaptability brings efficiency
- Flexible adjustment of the interconnects in size and performance
 - Bottleneck is in the interfaces and connectibility and whatever choice you make ...

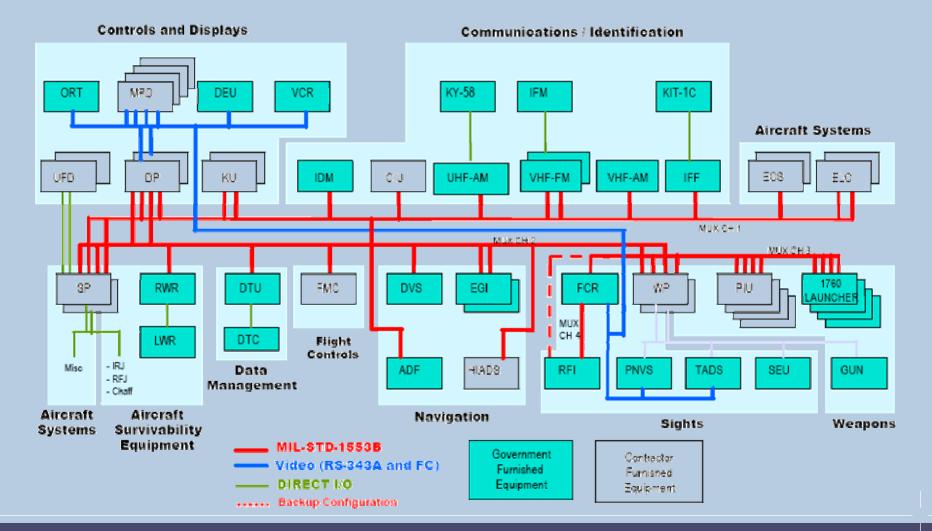
Multiple task specific processors can be integrated

- Instruction set can be extended as needed
- Still choices for a set have to be made to have a standardized design flow

Platform-Based Design

An FPGA platform saves time

- Integrated and pre-verified
- Configurable with pre-built IP blocks
- Simple to add logic blocks
- Readily available with low-cost development tools
- Immediate and customer-specific
- Includes rapid, inexpensive prototyping


∎But,

which MPU architecture is the "right" one?

Typical Application

Apache Longbow Architecture

The 8-bit market is huge and continues to grow

Over 3 billion units per year and growing

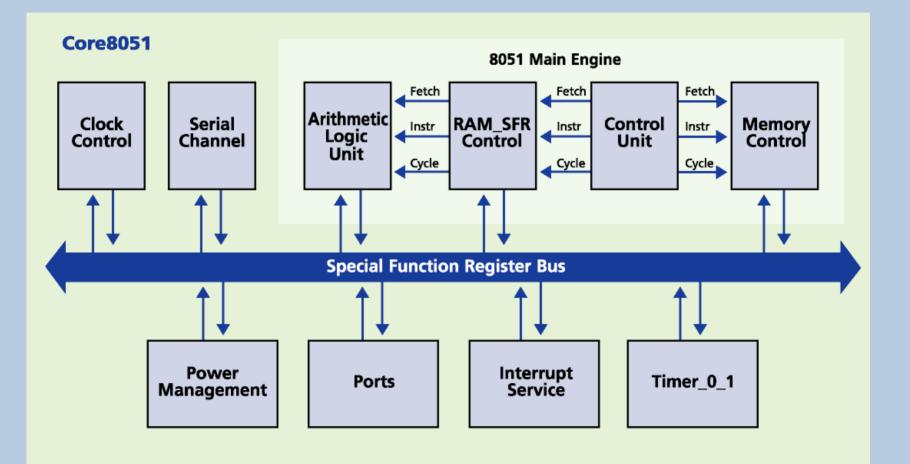
New applications still use 8-bit

 Industrial, military, aerospace, automotive, consumer and communications applications often utilize efficient 8-bit processing

8051 still owns 23% of the 8-bit market

- Over \$900 million and 650 million units per year
- Installed base in the billions
- There are over 30 thousand 8051 code developers

Core8051 Infomercial


Core8051 + Actel FPGA

- 100% ASM51 Code Compatible
- CPU with Boolean processor
- 13 interrupts with 4 priority levels
- 2 timers
- Programmable Serial Channel
- Four 8-bit I/O ports
- 1 clock cycle per instruction
- Embedded memory available
- Removable OCI block
- Creates a full-featured low-cost 8051
- As low as 35¢/MIPS

Core8051 Block Diagram

The FPGA as an "Embedded System Platform"

- Simplifies system design and reduces cost
 - Uses current Actel FPGAs, design tools and IP
- Pre-verified platform
 - Saves time and allows quick expansion
 - Peripherals verified individually and platform verified as a whole
- FPGAs allow customization without NRE and time delays
 - Customer focuses on adding unique IP
 - Eliminates development time of ASSPs and ASICs
 - Including custom radiation-tolerant and radiation-hardened designs
- Platform is configurable
 - Design with one core, a group of cores or entire platform
 - Delivered in one day over the Web
- Development board allows fast prototyping

Core Core Corel2C CoreSPI SDLC 16x50 **Special Function Register Bus** RAM **Memory Bus**

Solution 1 represents the typical 8051 system.

- The SDLC, I2C, CAN, SPI peripherials are connected to the CPU using dedicated 8051 SFR (Special Function **Register**) bus.
- Both RAM and ROM memories are connected directly using native R80515 memory bus.
- The same memory bus is also used by MAC controller.
- The user peripherals can be connected to the APB interface.

© 2004 Actel Confidential and Proprietary

ROM

Platform8051 (Option1)

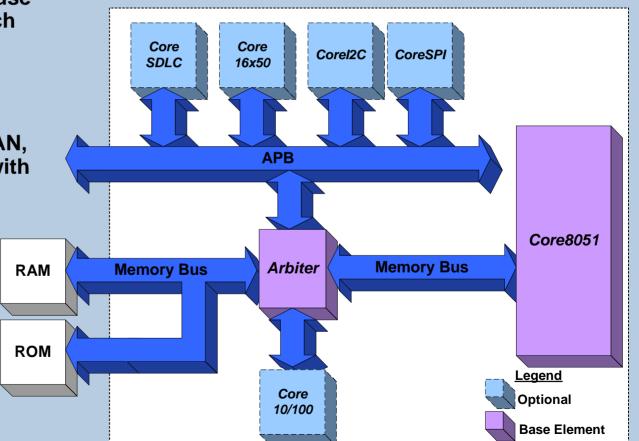
July 2004

Legend

Optional

Base Element

APB

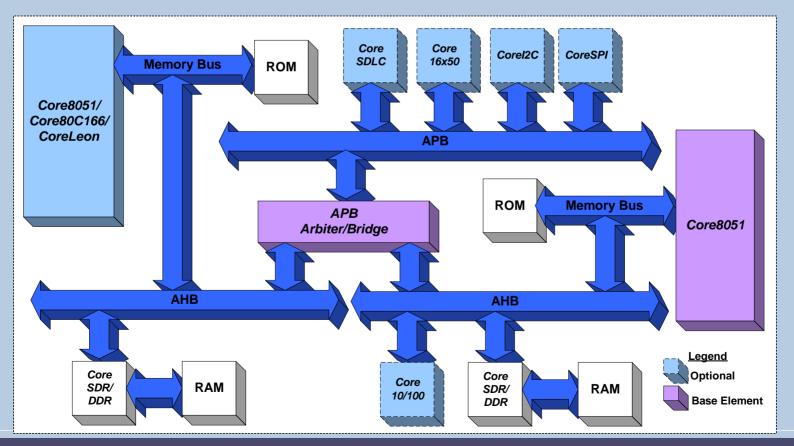

Core

10/100

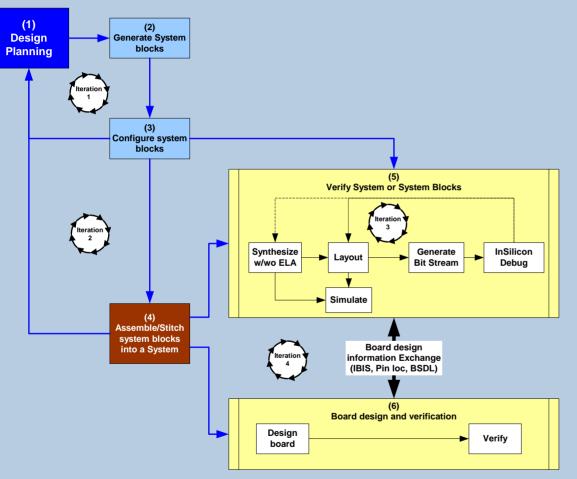
Core8051

Platform8051 (Option2)

- Solution2 is the modified version of Solution1.
- The difference is that this system does not make use of native SFR bus. Which makes the architecture more flexible for CPU upgrades.
- All key peripherals, including SDLC, I2C, CAN, and SPI communicate with CPU only via APB bus wrappers.
- This solution makes configuration of the system easier, but also reduces performance.



Platform8051 (Option3)



- The Solution 3 is the MPSOC Platform which contains a family of AMBAbased reusable peripheral IP blocks required for advanced SOC (Systemon-a-chip) designs with microprocessor core.
- It contains all the functionality for a typical SOC application including components such as bus bridges to AHB, APB, memory, serial units and ethernet controller.

System level design flow

Focus now on system

- Build in pieces
- Validate pieces
- Integrate incrementally
- Auto stitch
- Validate incrementally
- ** Start from a reference design, then iterate

Key components

- Generation of systems
- Assembly of systems
- Incremental changes
- Debugging
- Board level links

Platform8051 Development Kit

Board

- APA-600 FG676
- Modular with daughter card area

Demonstration Design

- Web server application
- Core8051 and Core10/100

Software

- Libero v6.0 Platinum
- Keil IDE
- TCP/IP Stack

Optional FlashPro Lite JTAG connector and programmer

Debugging/Validation

Hardware Software Co-Verification

- Software OCI logic build into the 8051
 - External GUI can access via JTAG link and FlashPRO
 - Load & Execute Code, single step, read/write registers and memory
- Hardware CLAM, Logic Analyzer function within the FPGA
 - External GUI can trace internal activity via JTAG link
 - Logic Analyzer added inside the FPGA

Features

- Triggers
 - Up to 4 Hardware triggers supported
 - Trigger on Code read/write, Code Execution, External Data read/write, SFR read/write, Internal Data read/write
- Trace
 - History of most recent branch points
 - Software execution flow can be reconstructed
 - Trigger(s) can start/stop Trace buffer writes
- 32 Channel 100MHz logic analyzer function

Summary

- FPGA is the coming platform for heterogeneous system design
- We introduced an 8-Bit MPSoC platform which is cost efficient and fast
- Debugging is still an art
- 16 and 32 Bit solution to follow