Video architectures and
networks

Wayne Wolf
Dept. of EE
Princeton University

Outline

Programmability and design methodologies.

Lv, Ozer, Wolf: Instruction-level parallelism is
not enough.

Lv, Yang, Wolf: Streaming is a myth.

Xu, Wolf, Henkel, Chakradhar: Networks-on-
chips require top-down and bottom-up analysis.

Lin, Lv, Ozer, Wolf: Networks of MPSoCs are
inevitable.

© 2004 Wayne Wolf

Why programmable
processors?

Too hard to get an all-hardware system to
work.
Algorithms may change:

During development.

After shipment.

Over product generations.

© 2004 Wayne Wolf

Why heterogeneous
architectures?

Processors:

Different microarchitectures for different
tasks.

More energy efficient.

Memory:
Reduce memory cost.
Increase memory efficiency.

© 2004 Wayne Wolf

Design methodologies for
software-intensive systems

Traditional hardware software
design is

combinationally rich,

sequentially somewhat
shallow. protocol

Components of systems

can be verified to

satisfy operations. .
Complete applications sequential

must verlfk/) rich
behavior: buffer

overflow, etc. o
combinational

© 2004 Wayne Wolf

The Princeton Smart
Camera Project

Goal: design SoC networks for real-time
distributed vision.

The best way to get a good design example
IS to create our own.

Video is a high-performance, low-power,
cost-sensitive application.

Vision is an important problem.

© 2004 Wayne Wolf

Ozer et al: human activity
recognition algorithm

Region | Contour Ellipse | Graph
extraction following fitting matching

ayne Wolf

Real-time analysis

Original

LA = -

FEp—

I

Region finding ¢ 5004 wayneworr ~ Ellipse fitting

Characteristics

Media processing
oriented

5 issue VLIW
processor

Floating point
support

Sub-word
parallelism support

If Conversion

Additional custom
operations

TM-1300 VLIW Processor

Constant 5

Integer ALLU 5

- Load/Store 2

= | DSP ALU 2

s | DSPMUL 2

2" | Shifter 2

= | Branch 3

EC"“ INT/Float MUL 2

™ | Float ALU 2

Float Compare 1

Float sqrt/div 1

H#Register 128
Instruction cache 32KB, 8 way
Data cache 16KB, 8 way

5

#0Operation slots/instruction

© 2004 Wayne Wolf

Processor selection

Cycles per

frame for

each stage:
Single
ISSUE.
Trimedia.

4-issue
superscalar.

cycles/frame

1.00E+07

1.00E+06 -

1.00E+05

1.00E+04 -

1.00E+03 -

1.00E+02 -

1.00E+01 -

1.00E+00

Osingle-issue
W Trimedia
[O4-issue superscal.

region contour

ellipse

match

hmm

© 2004 Wayne Wolf

Branches per instruction

18. 00%
16. 00%

14. 00%
12. 00%
10. 00%
8. 00%
6. 00%
4. 00%
2. 00%
0. 00%

Branches/ins

region contour ellipse natch hnm

© 2004 Wayne Wolf

Cache miss rates

6.00%

5.00% |

4.00% f

3.00% |

2.00% ¢

1.00% ¢

0.00%

region

O mstruction
cache
B data cache

contour ellipse match hmm

© 2004 Wayne Wolf

Data per stage

7.0E+05

6.0E+05 ¢

5.0E+05 ¢

4.0E+05 ¢

3.0E+05 ¢

2.0E+05 ¢

input data size(byte

1.0E+05
0.0E+00-

region contour ellipse match hnm

© 2004 Wayne Wolf

Operation Level
Parallelism Results

351

N

N

OPC

N

1.5

N

N

0.5

g721 enc
g721 dec
jpeg_enc
jpeg_dec
mpeg2 enc
mpeg2 dec
region
contour

© Zuu4 vvayne vvolr

ellipse
match
hmm
AVG

Multimedia requires
control

High-quality algorithms require control,
adaptation.

Control biases architectures toward

programmability, requires careful design
for paralellism.

© 2004 Wayne Wolf

ODFS and PLS algorithms

-7 6 -5 4 32101 2 3 4 5 67

WA R L R

Ome-Dimensional Full Search Procedure
Search Range -7 to +7
Motion Yector (3,6) in this case

- EEEE ||
' :
s .
1 i
u : 1]
OO OO OohbEE REESEEELLLLLLLLL
HEBOGGOOBHOHAAS D OBDOEGIDDIIIGEBIGE (E
oTotetotoetotetitits OB OBBOBEE ottt et
Tetesarerey '?;if-:a“} N {3-—§~f?,43{}Q{;.-T-9-DO~T:-§ DT (2
MO MM HOH M M- H O OHOHOOHO-OHCH
EEEEEE a8 EREEREE
. |
_I" B LT By | o1 i 1 i L
H] W.V. Predictor Position e
F (O Best Matching Point H1 '
' 1
0 Searched Candidates i—— ~ I - +
||_..|.1| T 71 T !'{_ :__... 1
HEEEEEENENEEEEEE N ' | 1

Fig. 4. PLS procedure. The search range is (=16, 15}, the motion-ve
predictor is (=4, =2}, and the best-matching point is (=4, =4} in this exam

© 2004 Wayne Wolf

CBAS and FE2SS

63 4-3-2-1012 3 4 5 867

i -7 -6 -3 67
i g 7 A .
¢ L T . |
-5 EI_I_E 3 (3] -5
-4 AH4 K1} i1 . Eﬂ -4 — *—
3 -3 |
) 2 *—
1 [J -1 —T
) EHEH ! 1 (1 M3 J=-{2] 0 —l
|] 1 1 I
4 il N —]
;

: 0 0] o X

5 [1] o r ¥

) I-I-r =1 5

; T)

2] 5 [i
[z} 2] & T i

Center-biased adaptive search Fast and efficient 2 step

search

© 2004 Wayne Wolf

3SS related algorithms

E3SS differs from N3SS in that:

1. A small dlamond patter is used instead e A2 a1 s e
of a square in the central area

2. Unrestricted search step for the small
diamond rather than a single movement
for the small square.

3. Test sequences: Coastguard, Football,
Salesman, Suzie

4. FS 3SS 4SS N3SS DS E3SS

(1) Large search window: 31*31, E3SS
performs better in terms of MSE and
search points than any other non-full Fig 5. search pattern used in the first step of E3¢
search algorithms

(2) Small window: 15*15, E3SS is similar
like DS and N3SS

|+r

=l gm W B LD R w3 owe Fa 0 R 4N O s

© 2004 Wayne Wolf

4SS related algorithms

4SS

1. Three 5*5 search windows and a final 3*3
window. First step uses 9 points.
Second/third step uses three or five points.
Final step uses 8 points.

2. Smaller search window 5*5 in the first step
of 4SS VS 9*9 in 3SS related algorithms.

3. More regular search pattern than N3SS.

4. 4SS has similar or worse image quality than
N3SS but less searching points

Other 4SS related algorithms: E4SS
Average Search points: E4S5<4SS<N35S5<3SS
MSE performance is similar like N3SS.

© 2004 Wayne Wolf

1 1 1
[l T W T W I.I.r_ [-Iu'J

N I~

[

'E}_"
| }i

Background elimination

Simple algorithm subtracts stored
background:

pixels

BG pixel —>>

© 2004 Wayne Wolf

Challenges

Several types of

P ActiveMovie Window

n_10t|0n mess up M%@é
simple background i WY/
elimination: WL 4
Large-scale object : *
motion.
Small-scale object
motion.

Camera motion.

© 2004 Wayne Wolf

Related work In
background elimination

Edge based

Yang et al, Comparing the edge information of the
current frame with the background edge information
to determine the introduced objects.

Block based

Hsu et al, Using statistical likelihood test to
determine the blocks with significant changes

Pixel based
Adaptive Gaussian Model (Wren et al)

Gaussian Mixture Model Based (Stauffer and
Grimson)

© 2004 Wayne Wolf

Lv background elimination
method

Background
image

M otion
E stim ation

M otion
Compensation

Background
subtraction

© 2004 Wayne Wolf

Network-on-chip design

Physical design: networks simplify delay,
clock distribution.

Architecture/software: packets provide
structure for communication.

© 2004 Wayne Wolf

Test architecture

A good case for NoC
Multiple processor IP’s --- 7 processors
High performance --- 150 frame/sec

© 2004 Wayne Wolf

Bus-based NoC Model

PO | | P2

Output
agent

IS

Arbiter

Input
agent

AAAA
>

Processor-controlled

model

Processors exchange
frame-ﬁrocessing-status
through bus

Arbiter grants bus based
on priorities
Arbiter-controlled model

Frame-processing-status
of each processor is sent

to arbiter

Arbiter grants bus based

on more information
Bus: 32-bit data, 21-bit
address, 2-bit control

© 2004 Wayne Wolf

Switch-based NoC Model
(1)

P1 | P3| P5 Q

Same computation nodes

Different communication architecture
Crossbar switch

Switch control unit use the same priority as the bus
arbiter

© 2004 Wayne Wolf

Switch-based NoC Model
(1)

Input buffered NxN crossbar

N is 10 for single memory, 11 for dual
memories

Port width: 5-bit, 8-bit, 16-bit, 32-bit, and
55-Dbit

4 types of packets: write, read, switch
response, and read response

© 2004 Wayne Wolf

Simulation Environment and
Method (l)

Telecommunication simulator is used
OPNET

Adaptations on time scale, delay, and
synchronization

The simulation models are cycle-
accurate

Trace-driven simulation

Recorded trace from simulation of
computational architecture

© 2004 Wayne Wolf

Simulation Environment and
Method (l1)

trace for frame entry
a node : struct trace_entry
0 . {unsigned int interval;
' unsigned int source;
' entry m-1 unsigned int destination;
frame n-1 enum {Read,Write}
/ ~ operation_type;
framen K1 entry m unsigned int address;
unsigned int size;
frame n+1 entry m+1 int frame end flag;}
' .
' 0
' 0

Trace are recorded in an ideal NoC
Each node has its own trace

© 2004 Wayne Wolf

Simulation Results and
Analysis (I)

3x108 clock cycles are simulated

Assume the processor and NoC working at
the same frequency

Optimistic for bus, reasonable for switch
Required system frequency

3x10° x150

Pr ocessed Frames

System Frequency =

© 2004 Wayne Wolf

Simulation Results and

Analysis (I!)

.

Performance Performance Eequired
(processed improvemment frequency
Model Name frames 1n [:reter_rn . e
3x10° clock arbiter- reach 150
-) 1': "-::C controlled frame per
cycles) model) secondd
27 _thit
32 h1t.Eﬂrt 11x11 I:-I-:I:-'S'Sba_l’ 130 132 1% 346
with 2 memories
1 5—b1t:‘p ort 11x11 l:_r-:::-f_-.-s.ba.t 106 20 394 475
with 2 memories
iy Lwr R
16 1:-11_. port 3x3 1:1'-5::-551:-51' 104 25 7% 133
with 2 memories
535-bit‘port 10x10 crossbar 102 82.1%0 441
32-bat'port 10x10 crossbar o1 62 5% 495
S—bn:‘g ort 11x11 Cl-'GE'E-bEII 67 19 6% 672
with 2 memories
16-bitv'port 10x10 crossbar 37 1.8%0 789
16-bit'port 3x3 crossbar 26 0 204
Arbiter-controlled 56 reference S04
Processor-controlled 49 -12_.5%% o188
E-bat'port 10x10 crossbar 36 -35.7% 1250
S-bat'port 10x10 crossbar 23 -58. 9% 1957

© 2004 Wayne Wolf

Simulation Results and

Analysis (11l))

Maximum Average
Model Name thra:-L_lghput rlu-::-pghput 'I"J_'e_nﬂ.-'r:r_rk
(bit per (bit per utilization
clock cvcle clock cwcle)
R
32 blt._l_:r-::-ril]};ll c_ra:-aaba_r 352 270 7 704
with 2 memories
1!3—1:-1’[.-'_1_3-;::-1—2113;11 ::_rc:-'s'sba_t 176 13 0 17 504
with 2 memories
-t/ Qw3 1
16 b1t.p:}f 3Ix3 v:r-f:r-s-.abﬂr with 48 212 44 295
2 memories
25-bat'port 10x10 crossbar 250 21.0 3 8%
32-bit/port 10x10 crossbar 320 189 5.9%
E—bﬂ.-'l__-_u}rrql 1x11 ::1_'+::f_-.'sbar eg 13 6 15 5%
with 2 memories
16-bat/port 10x10 crossbar 160 11.5 7.2%%
16-bat'port 3x3 crossbar 48 11.4 23 8%
Arbiter-controlled o4 10.1 18. 7%
Processor-controlled 24 102 18 9%
S-bat'port 10x10 crossbar a0 73 9. 1%
S-bat'port 10x10 crossbar 50 4.7 O 4%

© 2004 Wayne Wolf

45 -

//SE—t:-'rrIpﬂr‘t 11=x11 crosshar
. J5 - B
&2
o
=
s
——
~
=23
=
-
-] 20 -
o
-
=
=1
=
3
E -I E-hi.l'pl:ll"t ST crosshar 16- I::-i.l'pnjr‘t 11211 Erl:tﬂili:lﬁr
bl WW{W WWWWUW 1'| Jy‘nJLuV
-I::nrl..l'p-nr't 11x11 cro=shar
5 L| 1
0O.0+00 4 9E+07 9. 0E+D7

time { clock cycle)

Network throughput using tvwo shared memonries
© 2004 Wayne Wolf

Hot spots

Processor Processor Processor Processor
0 2 4 6
Communication Memory
sub-system sub-system
Input Processor Processor Processor Output
agent 1 3 5 agent

© 2004 Wayne Wolf

Grand unified application
and SoCs

Gesture recognition,

face recognition, .
facial expression

analysis, speech _.
recognition, non-
speech sound video .

recognition, Etc.
c cru e

architecture.

Algorithms +
© 2004 Wayne Wolf

Peer-to-Peer Camera
Algorithms

Distributed computing
Data exchange

Migration Methodology
Directly inheritable
Trade-off between performance and communication cost

Example:

© 2004 Wayne Wolf

Peer-to-peer video analysis

\ ’ \ ’
\ ’ \ ’

© 2004 Wayne Wolf

Peer-to-Peer Camera
Algorithms (cont.)

Algorithm partitioning
When to transmit?

Accuracy vs. Traffic
What to transmit? l l

Not all the data are useful

P> >
[] v 7
Y Y

© 2004 Wayne Wolf

Results

Single camera

Multiple cameras

© 2004 Wayne Wolf

Distributed smart camera
node

Internal network talks
to IP (or specialized
protocol):

control data memory processor

Network
link

© 26o=~ ‘ayne Wolf

