Video architectures and networks

Wayne Wolf Dept. of EE Princeton University

#Programmability and design methodologies.

- Lv, Ozer, Wolf: Instruction-level parallelism is not enough.
- [₭]Lv, Yang, Wolf: Streaming is a myth.
- Xu, Wolf, Henkel, Chakradhar: Networks-onchips require top-down and bottom-up analysis.
 Lin, Lv, Ozer, Wolf: Networks of MPSoCs are inevitable.

Why programmable processors?

*Too hard to get an all-hardware system to work.

#Algorithms may change:

- During development.
- △After shipment.
- Over product generations.

Why heterogeneous architectures?

#Processors:

Different microarchitectures for different tasks.

More energy efficient.

#Memory:

Reduce memory cost.

△Increase memory efficiency.

Design methodologies for software-intensive systems

- Fraditional hardware design is combinationally rich, sequentially somewhat shallow.
- Components of systems can be verified to satisfy operations.
- Complete applications must verify rich behavior: buffer overflow, etc.

The Princeton Smart Camera Project

#Goal: design SoC networks for real-time
distributed vision.

- The best way to get a good design example is to create our own.
- Video is a high-performance, low-power, cost-sensitive application.
- ✓Vision is an important problem.

Ozer et al: human activity recognition algorithm

Real-time analysis

Original

Region finding

© 2004 Wayne Wolf

Ellipse fitting

TM-1300 VLIW Processor

Characteristics

- Media processing oriented
- 5 issue VLIW processor
- Floating point support
- Sub-word parallelism support
- ☐ If Conversion
- Additional custom operations

#Functional Unit	Constant	5
	Integer ALU	5
	Load/Store	2
	DSP ALU	2
	DSPMUL	2
	Shifter	2
	Branch	3
	INT/Float MUL	2
	Float ALU	2
	Float Compare	1
	Float sqrt/div	1
#Register		128
Instruction cache		32KB, 8 way
Data cache		16KB, 8 way
#Operation slots/instruction		5

Processor selection

[₭]Cycles per frame for each stage: **Single** issue. △Trimedia. △4-issue superscalar.

Branches per instruction

Cache miss rates

Data per stage

Operation Level Parallelism Results

© 2004 vvayne vvoir

Multimedia requires control

High-quality algorithms require control, adaptation.

Control biases architectures toward programmability, requires careful design for paralellism.

ODFS and PLS algorithms

One-Dimensional Full Search Procedure Search Range -7 to +7 Motion Vector (3,6) in this case

Fig. 4. PLS procedure. The search range is (-16, 15), the motion-ve predictor is (-4, -2), and the best-matching point is (-4, -4) in this exam

CBAS and FE2SS

Center-biased adaptive search search

3SS related algorithms

E3SS differs from N3SS in that:

- 1. A small diamond patter is used instead of a square in the central area
- 2. Unrestricted search step for the small diamond rather than a single movement for the small square.
- 3. Test sequences: *Coastguard, Football, Salesman, Suzie*

4. FS 3SS 4SS N3SS DS E3SS

- (1) Large search window: 31*31, E3SS performs better in terms of MSE and search points than any other non-full search algorithms
- (2) Small window: 15*15, E3SS is similar like DS and N3SS

Fig 2. Search pattern used in the first step of E3S

4SS related algorithms

- Three 5*5 search windows and a final 3*3 window. First step uses 9 points. Second/third step uses three or five points. Final step uses 8 points.
- 2. Smaller search window 5*5 in the first step of 4SS VS 9*9 in 3SS related algorithms.
- 3. More regular search pattern than N3SS.
- 4. 4SS has similar or worse image quality than N3SS but less searching points

Context 455 related algorithms: E455Average Search points: E455<455MSE performance is similar like N355.

Background elimination

Simple algorithm subtracts stored background:

Challenges

Several types of motion mess up simple background elimination:

- Large-scale object motion.
- Small-scale object motion.

Camera motion.

Related work in background elimination

△Yang et al, Comparing the edge information of the current frame with the background edge information to determine the introduced objects.

Block based Block based State

➡Hsu et al, Using statistical likelihood test to determine the blocks with significant changes

∺ Pixel based

Adaptive Gaussian Model (Wren et al)

☐Gaussian Mixture Model Based (Stauffer and Grimson)

∧..

Lv background elimination method

Network-on-chip design

Physical design: networks simplify delay, clock distribution.

#Architecture/software: packets provide
structure for communication.

Test architecture

₭ A good case for NoC Multiple processor IP's --- 7 processors ➡ High performance --- 150 frame/sec

Bus-based NoC Model

₭ Processor-controlled model

- Processors exchange frame-processing-status through bus
- Arbiter grants bus based on priorities
- 8 Arbiter-controlled model
 - Frame-processing-status of each processor is sent to arbiter

Arbiter grants bus based on more information

₭ Bus: 32-bit data, 21-bit address, 2-bit control

Switch-based NoC Model (I)

Same computation nodes

Bifferent communication architecture

Crossbar switch

Switch control unit use the same priority as the bus arbiter

Switch-based NoC Model (II)

Input buffered NxN crossbar N is 10 for single memory, 11 for dual memories

₩Port width: 5-bit, 8-bit, 16-bit, 32-bit, and 55-bit

#4 types of packets: write, read, switch response, and read response

Simulation Environment and Method (I)

- ₭ Telecommunication simulator is used

 ▲ OPNET
 - Adaptations on time scale, delay, and synchronization
- ∺The simulation models are cycleaccurate
- **#**Trace-driven simulation
 - Recorded trace from simulation of computational architecture

Simulation Environment and Method (II)

% Trace are recorded in an ideal NoC % Each node has its own trace

Simulation Results and Analysis (I)

₩3x10⁸ clock cycles are simulated

∺Assume the processor and NoC working at the same frequency

○ Optimistic for bus, reasonable for switch
※Required system frequency

System Frequency =
$$\frac{3 \times 10^8 \times 150}{\text{Pr ocessed Frames}}$$

Simulation Results and Analysis (II)

Model Name	Performance (processed frames in 3x10 ⁸ clock cycles)	Performance improvement (refer to the arbiter- controlled model)	Required frequency (MHz) to reach 150 frame per second
32-bit/port 11x11 crossbar with 2 memories	130	132.1%	346
16-bit/port 11x11 crossbar with 2 memories	106	89.3%	425
16-bit/port 3x3 crossbar with 2 memories	104	85.7%	433
55-bit/port 10x10 crossbar	102	82.1%	441
32-bit/port 10x10 crossbar	91	62.5%	495
8-bit/port 11x11 crossbar with 2 memories	67	19.6%	672
16-bit/port 10x10 crossbar	57	1.8%	789
16-bit/port 3x3 crossbar	56	0	804
Arbiter-controlled	56	reference	804
Processor-controlled	49	-12.5%	918
8-bit/port 10x10 crossbar	36	-35.7%	1250
5-bit/port 10x10 crossbar	23	-58.9%	1957

Simulation Results and Analysis (III)

-			
	Maximum	Average	Network
Model Name	(hit per	(hit per	utilization
	clock cycle	clock cycle)	Gunzation
32 hit/port 11x11 crosshar	clock cycle	clock cycle)	
with 2 memories	352	27.0	7.7%
16 hit/port 11x11 groupher			
with 2 memories	176	22.0	12.5%
with 2 memories			
10-bit/port 3x3 crossbar with	48	21.2	44.2%
2 memories			
55-bit/port 10x10 crossbar	550	21.0	3.8%
32-bit/port 10x10 crossbar	320	18.9	5.9%
8-bit/port 11x11 crossbar with 2 memories	88	13.6	15.5%
16-bit/port 10x10 crossbar	160	11.5	7.2%
16-bit/port 3x3 crossbar	48	11.4	23.8%
Arbiter-controlled	54	10.1	18.7%
Processor-controlled	54	10.2	18.9%
8-bit/port 10x10 crossbar	80	7.3	9.1%
5-bit/port 10x10 crossbar	50	4.7	9.4%

Hot spots

Grand unified application and SoCs

#Gesture recognition, face recognition, facial expression analysis, speech recognition, nonspeech sound recognition, Etc. architecture.

Peer-to-Peer Camera Algorithms

Bistributed computing

- 🔀 Data exchange
- Higration Methodology
 - Directly inheritable
 - □ Trade-off between performance and communication cost

 \square Example:

Peer-to-peer video analysis

Peer-to-Peer Camera Algorithms (cont.)

Single camera

Multiple cameras

Distributed smart camera node

High Internal network talks
to IP (or specialized
protocol):

