
CoSy is an international trademark of ACE Associated Computer Experts bv

Will the software Dinosaurs step aside 
or step on MPSoC?

Martijn de Lange
ACE Associated Compiler Experts

Founder / CEO 

MPSoC, July 2004



2

ACE Associated Compiler Experts
• Subsidiary of ACE Associated Computer Experts

– Established 1975, Amsterdam, the Netherlands
– Employee-owned company
– Advanced systems-software products and services

• Products
– CoSy compiler-development system
– CoSy Express technology
– SuperTest C compiler test & validation suite

• Target Market
– Compiler developers

• Semiconductor companies
• Software tool vendors

• www.ace.nl



3

Overview - what’s a design
• MPSoC design moves too fast
• Software is dominant but not recognized
• ‘Design’ needs redefining
• H/W and S/W need teaming up
• Parallelism, why should we



4

Too Many Embedded Challenges
• Multi Processor, heterogeneity, legacy codes
• Design flexibility
• Programmers who won’t follow
• Software Costs > 50% of Design Cost
• Flexibility not utilized



5

Embedded 
Systems Development Realm

• 20M SW developers
– C, C++, Java, Fortran-90…

• 60K–200K arch. designers
– EDA tools

• 1K–10K processor 
designs/year

• 5K–100K reference 
designs/year

• Millions of embedded 
products/year

60K–200K 
Arch. designers

EDA
tools

EDA
tools

5K–100K
Reference designs

1K–10K 
processor designs

C / C++ 
Java / F90

20M 
SW developers

Millions of embedded-
systems products



6

EDA Tools

EDA Tools

The “Application-Specific” Drive
• Application-specific 

processors, SoC’s, MPSoC’s
– Special hardware functionality

To enable efficient embedded-application development,
EDA tools need to match architecture-specific functionality

with the high-level programming environment

• Application software 
development
– Generic languages
– C, C++, Java, Fortran-90… 

Bottleneck



7

EDA Tools

Compiler Technology is Crucial
• Compiler technology is 

the natural bridge 
between high-level 
programming and 
hardware functionality

• Compiler should 
efficiently employ specific 
architectural features

Compiler

Flexible compiler technology is crucial to unleash
MPSoC capabilities



8

Architecture Design Cycle

HW Design
functionality

level

Silicon Design Tools
Simulator Generator

EDA Tools
Platform

T

RTOS / Libraries / … 

Application Code: C / C++ / Java / Fortran-90 … Application
Design

100%
completeDesign 

play field

MP 
Architecture

FPGA

COREs

DSPs

Compiler Compiler



9

Parallel Architectures are 
Designed for Parallel Applications

• The architecture’s characteristics must match 
those of the application:
– Grain size, the amount of work per task
– Homogeneity of task size, computation, data distribution, 

communication

• The compiler, translating from application to 
architecture, must be able to represent these 
characteristics



10

Grain Size and Homogeneity
• Differences can be orders of magnitude
• Fine grain size requires highly efficient task 

management
• Homogeneous tasks offer opportunity to share 

control and configuration overhead



11

Smaller Grain Size is Easier to Handle 
by the Compiler

Loops

Algorithms

Applications

Instructions

Coarse Grain Size
Unpredictable resource
requirements
The programmer domain

Fine Grain Size
Countable resource re-
quirements
The compiler domain



12

Architecture Characteristics

Coarse Grained

Fine Grained

HomogeneousVariable

MIMD
Heterogeneous

SPMD
HPF

DSP
VLIW/ILP

(RISC)

Large Scale SIMD
Static Data flow
Vector



13

On Parallel Programming
• Parallel programming is extremely hard

– Humans are not good at imagining all possible parallel execution
orders

– Parallel machines are non-deterministic, making testing and 
debugging very difficult

– Explicitly parallel programs are architecture specific, hence 
hard to maintain and port

• The programming environment (compiler) should help 
as much as possible

• But…



14

Applications & Parallelism

All applications

Applications that can be
parallelized manually

(Legacy) applications that
can be parallelized by
annotations

Automatically parallelizable
sequential applications



15

Directing Focus
of Parallelization Efforts

• Many applications cannot be efficiently 
parallelized at all
– However, embedded (media) applications do offer lots of 

parallelism at several levels

• Automatically parallelizing sequential programs 
(holy grail) is interesting because it reduces 
programming effort, but only few programs 
qualify



16

Programs and Languages
Live Longer than Architectures

Architectures

High Level
Language

Tools

Compiler tools make 
the difference -

for parallel 
architectures even 

more so,
as they are more 

difficult to program

Time



17

• Sequential programs, with
annotations (restrict, memory
spaces) to help the compiler

• Automatically parallelized by the compiler for 
pipelined, DSP and VLIW/ILP architectures

Type A Parallelism:
Variable, Fine Grained

A
Variable

Fine Grained

B
CD



18

Type B:
Homogeneous, Fine Grained

• Needs vectorizing compilers
• Resources still predictable
• Vectorizing plain C, with

pointers, is hard; annotations help
A

Homogeneous
Fine Grained

B
CD

Architectures Compilers

-(Large) Vector
-SIMD (small vector)

-Fine grain static data flow
(aka reconfigurable)

-Allocation of resources
-Tiling of arbitrary
data-size
-Streams paradigm



19

Type C:
Homogeneous, Coarse Grained

• NPU architectures: static control 
and communication patterns

• Replicated processor architectures A

Homogeneous
Coarse Grained

B
CD

Programming Paradigms Compilers

-Explicit: OpenMP, StreamIt
-Performance analysis based

resource allocation
-SPMD, HPF (not streamed)

-Generate and optimize
global communication
and control
-Abstract interpretation



20

Type D:
Variable, Coarse Grained

• MPSoC architectures, collection
of specialist processors

• Differentiate between networked
(uncommon in embedded) and shared memory

• Programming paradigms and compiler support 
similar (add MPI) to Type C, but more complex 
because of heterogeneous architecture

A

Variable
Coarse Grained

B
CD



Evolutionary: MPSoC
Parallelism Type: D



22

System on a Chip
Evolutionary Approach

• Chip space is readily available, but non-locality 
of on-chip communication is a bottleneck

• Two processors of 300MHz are more power 
efficient than one of 600MHz (Freq3≈Power)

• Hardware/System design tools “easily” support 
putting legacy, specialized, building blocks 
together

• But programming SoCs proves cumbersome



23

SoC Programming Problems
• Existing, single processor, programs are not written to 

serve as a parallel component
• Application data-flow and control-flow are separated
• Distributed control of heterogeneous independent 

processors requires unified run time support
• Multiple data-models (24 versus 32 bit integers)
• As applications become more diverse, patterns of 

parallelism become more dynamic



24

Parallelization of Programs for SoC

Loops

Algorithms

Applications

Instructions

Programmer splits 
application at high 
level, using 
performance analysis to 
decide allocation 

Low levels stay 
sequential, leaving 
much of data handling 
and control unchanged 



25

Supporting Parallelization for SoC
• Programmer decides based on performance analysis

feedback, then uses annotations to distribute the 
application across multiple processors

• Compiler can generate data sharing and control “glue”, 
allowing programmer more flexibility in decisions

• Compiler can compile for heterogeneous system, taking 
care of differences in data models

• Method is suitable for legacy programs that can be split 
at high level



26

Alternative SoC Parallel
Programming Paradigm

• Explicitly parallel MPI-like model where data transfer 
and program control is based on message passing

• Compiler can optimize message passing to exploit shared 
memory (avoiding copies)

• Application requires parametrization to allow 
experimentation and to adjust to optimal mapping to 
parallel hardware --- abstract interpretation can hard-
wire parameters at compile time to avoid run-time 
overhead 

• But this will push programmers into a certain 
framework --- programmers may resist against this



27

Where are we now

• Assembly is dead long live assembly
• C/C++ codes are very expensive to reengineer
• Compilers cannot identify sufficient parallelism
• Design money is drained into H/W design
• Programmers don’t like non-orthogonal paradigms
• Codes exist and shall be reused



28

Complexity?

• Flexible x reconfigurable x multi-CPU x NUMA x SHM 
x SIMD x MIMD x SPMD x distributed memory x
heterogeneity x data models x multi-tasking x message 
passing x CSP x data parallelism x monitors x ILP x
VLIW = 

NOT WORKING



29

Conclusions

• KISS
• Let more design money flow to software
• Allow for 10 years of research
• Agree on methods and paradigms (not standards)
• Stop h/w designers from being ‘clever’
• History is there for a reason
• The dinosaurs will not die suddenly


