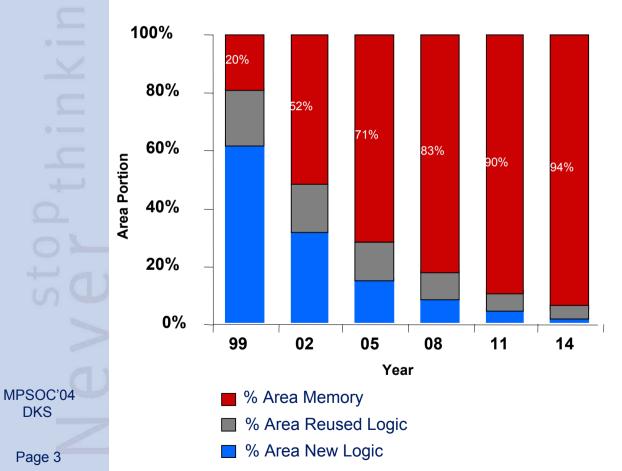


MPSOC'04 DKS Page 1

Memory Issues in SoC

Doris Keitel-Schulz Infineon Technologies AG Munich, Germany doris.keitel-schulz@infineon.com


Memory Issues in SoC

MPSOC'04 DKS Page 2

- Trends of memory content in SoC
- Memory solutions and trade offs
- New memory technologies

Memory Content Forecast (ASIC type)

Advantages

lower power consumption higher bandwidth ,form factor

Disadvantages

cost (mask, ramp..) decreased flexibility process complexity yield limitations

Challenges

Devices are becoming memories with ,programmable' or reconfigurable logic

Source: IC Insights, SIA Roadmap and others

MPSOC'04 DKS

Page 4

Embedded Memory

- \checkmark bandwidth adapted to the application
- ✓ less driver and interconnect delay
- ✓ optimized (multi bank) architectures
- ✓ reduced I/O power
- ✓ on-demand memory activation
- ✓ Optimized memory size (vs commodity)

Possible cost reduction using embedded Memory

- ✓ Reduction of packaging costs
- ✓ Form factor enabling portable applications
- ✓ Board space saving
- ✓ Less magnetic interference
- ✓ Take advantage of 'loose areas' due to pin/ pad limited designs

This however is extremely dependent on the commodity market

Page 5

Possible semiconductor solutions for memories

Memory subsystems based on 'semiconductor devices' **DRAM** (standard, high speed, low power)

► SRAM (standard, high speed, low power, cache..)

→Flash (data, code, mixed)

→OTP (code, long time storage)

► MTP (code, long time storage)

► MCP (combination of above)

Page 6

Memory Core Concepts

Requirements

- ✓ Quick and first time right implementations of compilers or customized memories
- \checkmark Building block architecture with fine granularity of memory sizes
- ✓ Large range of interface width
- \checkmark Interfaces have to comply with high level design methodologies
- ✓ Configurable multi-bank architectures and variable page sizes
- ✓ Flexible redundancy concept
- ✓ Inexpensive test methodology in place

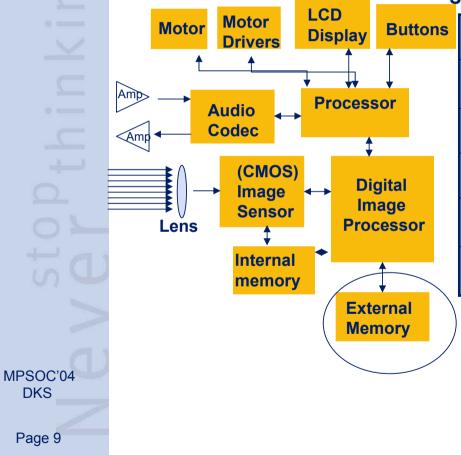
MPSOC'04 DKS

Page 7

Integration of memories

Main challenge for integration

functionality vs process costs performance vs process features package cost vs power special process vs area utilization typical market behavior for commodity products MCP vs integration yield estimates reliability issues

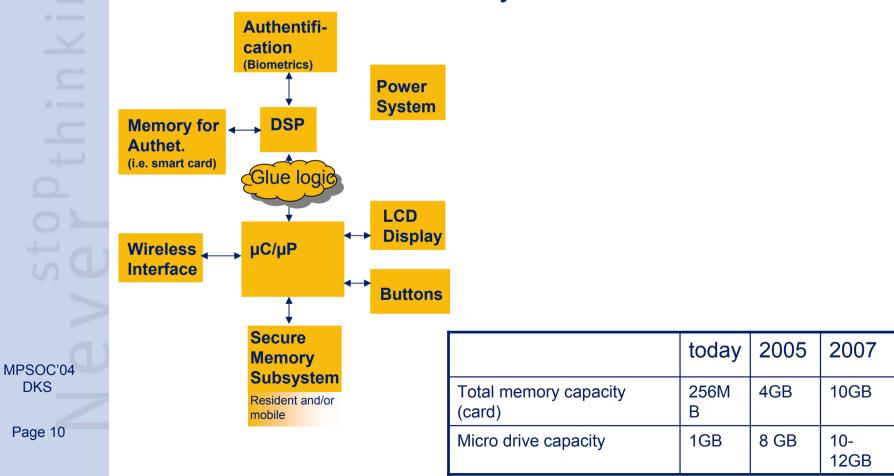

Page 8

DKS

Applications Digital still camera (high end)

Technical requirements impacting the internal memory and the memory subsystems

	-			
•		today	2005	2007
	Total memory capacity (card)	256M B	4GB	10GB
	DRAM (if available)	64Mb	512Mb	2Gb
	Typical high end picture	3 MB	6 MB	9 MB
	Typical number of active pixels	4 Mega	8 Mega	12 Mega
	Typical mainstream picture (no new compression mode)	1,7MB	3,5MB	5,3 MB


Direct storage to card

Storage to internal DRAM and streaming to card later

Applications Security/Safety Monitoring Systems

Technical requirements impacting the internal memory and the memory subsystems

Comparison existing technologies

MPSO	C'C)4
DK	S	

	SRAM	eFlash	eDRAM
Write time	<< 10 ns	~ 100 µs	< 20 ns
Write endurance	> 10 ¹⁵	~ 10 6	> 10 ¹⁵
Read time	<< 10 ns	~ 20 ns	< 20 ns
Volatility	no refresh req.	Non volatile	Refresh req.
SER immunity		+	+
Cell size	> 100 F ²	~ 10 F ²	~ 8 F ²
Mask adder compared to standard CMOS	0	5-8	4-8

MPSOC'04

DKS

Page 12

New Memory Technologies – next candidates (1)

Ferro RAMs

polarization of an internal dipole in i.e. PZT material reading of displacement current; destructive read low power consumption

Phase Change RAM

Chalcogenides (CDs , DVDs) are changing from amorphous to crystalline status through heating Resistance measurement; medium power required

MRAM

Switching of magnetic polarity of the sense layer fast write/read, high endurance high write current

CBRAM

Chalcogenides or other materials which can built a conducting path by 'reordering' dissolved silver fast write plus rel. low power

New Memory Technologies - next candidates (2)

Polymer Memory change in resistance all polymer vs hybrid

Molecular memory

Cross point cells which contain molecules which change electronic stated in Redox process Multibit capabilities

Carbon Nanotubes

resistance sensing nanotube 'ordering' in a crossbar architecture

Millipede Memory

little bit like 'old fashioned punch cards' PMMA

Page 13

Thank you for listening

Page 14