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• Moore’s Law is driving us
– ~60% yearly growth in number of transistors

• Enabling new products with 
– lower cost (mm²) and lower power (W) dissipation 

and
– higher flexibility (MIPS) and functional 

performance (GOPS)

Trends
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Moore’s Law: Computational Efficiency
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• System with one or more CPUs: Moore’s law gives both
cost down and feature-up.

– General Purpose processors are eating
more of the current application pie (e.g.
audio on CPU ) – with IP in SW

– Flexibility becomes more important
but also more affordable

Required by 
wireless standards

Offered by 
conventional DSPs

• Challenge/opportunity: high performance at low power 
requires (massive) parallelism

– System customized compute engines
– Multi-processor systems
– Subsystem integration

• New systems are demanding
more compute power

Technology Trends
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The OEM’s integration problem
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Industry Trends (Observations)

• Mask cost is increasing above 
a dangerous threshold.

• Design teams are becoming 
very large (> 100 FTE); design 
productivity is not increasing as
fast as Moore’s Law.

• Embedded SW content is 
exploding.
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Industry Trends (Approach)

• Industry wide reuse of Intellectual Property (IP) blocks, 
from many IP suppliers; from captive cores to “open” 
cores with extensive Ecosystems

• Facilitated by platform choices (Nexperia Home/Mobile)

• From Application Specific ICs towards Programmable 
ICs for a certain Application Domain; product 
differentiation through SW.
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Networks-on-Silicon: Positioning
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From Busses to Networks-on-Silicon
• IP blocks become

subsystems
• Busses become 

networks offering
services at various
levels à la OSI
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Networks-on-Silicon: Connecting ICs
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Networks-on-Silicon: Technology
• To solve the transport delay problem and to 

handle the complexity in future generations of SoC
by defining the next generation paradigm for 
platforms.
– Infrastructure and related design technology for 

communication.
– To organize the communication according to a layered & 

standardized communication stack (OSI like). 
– To describe systems as networks and efficiently map 

programs on multiple processors in the network
– To guarantee (predictable) performance and scalability 

with plug & play of subsystems.
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Networks-on-Silicon: Infrastructure
• Main active elements in

network infrastructure:
– network interface
– router

• ATM-like packet-based 
programming model

• 52Gb/s aggregate throughput
• QoS

– Guaranteed Throughput
– Best Effort

• Supporting interoperability
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Networks-on-Silicon: Inter-Chip Link
– Standardization of physical interconnect

• For seamless links between chips 

– From SiP up to box level
• Multiple chips in different process technologies

– Transparent to IPs / subsystems on chips
• Physical interconnect hidden by more abstract interface
• Abstract interface supports re-partitioning with a different 

physical interconnect for on-chip communication

– Variety of classes: from Mbits/s up to Gbits/s
• CMOS Audio, Compressed Video
• Low swing differential Standard resolution images
• Embedded clocks High resolution images
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Mapping Applications to Networks

Architecture
- multi-processor 
- distributed shared 

memory

Application
- parallel tasks
- streams

Mapping
- tasks to processors
- FIFOs to memory

Processor ASIP ASD

Memory

System synthesis: minimal hardware that is 
required to meet the timing requirements as 
defined in the specification. 

System programming: given a multiprocessor 
network find a mapping of the application that 
satisfies the timing constraints.
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Networks-on-Silicon: Linking HW & SW
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•Goal is to facilitate reuse of tasks 
through definition of interface for 
streaming (queues, fifos, channels)
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Memory and Streaming

Support for streaming via on-chip memory
• Streaming via off-chip memory:

– Bandwidth bottleneck
– Power consumption
– Pin count

• Streaming via on-chip memory
– High sync rate is enabler (implementation challenge)
– Small buffers (in distributed shared memory)
– Low latencies
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• Meeting the temporal requirements is essential for many consumer
systems. 
– Hard real-time: 

• don’t miss a deadline (= guarantee throughput and latency)
• graceful degradation is not supported
• e.g. channel decoders, picture improvement, audio decoding 

– Soft real-time:
• there is some diminished value when deadline is missed and

value does not increase if result is delivered earlier
• graceful degradation or fall back must be supported
• objective is constant Quality of Service (QoS)
• e.g. video decoders

– Best-effort:
• an earlier delivered result is appreciated
• e.g. web browser

Predictable Multiprocessor Networks
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Related Models of Computation

• Kahn Process Networks [Kahn, 1974]
– concurrent processes communicating through unbounded fifos
– deterministic communication only

• Communicating Sequential Processes [Hoare, 1978]
– concurrent processes communicating through unbuffered channels
– non-deterministic communication through probe [Martin, 1985]

• Dataflow Process Networks [Lee and Parks, 1995]
– special case of KPN; processes are actors plus firing rules
– Fire & Exit: each iteration has to be one atomic action.       

Requires explicit state saving for data-dependent behavior
• Communicating Finite State Machines [Balarin et al.,1997]

– broadcasting of time-stamped events
– global notion of time difficult to implement in parallel and 

distributed signal processing systems
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Networks-on-Silicon: QoS
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• A number of (smaller processors) communication using a 
protocol with cache coherence extensions

• Each processor has its own L1 cache and shares an L2 
cache with interleaved memory banks

• Escaping from Pollack’s rule (exploding power densities 
for higher performant CPUs)

Multi-processor network nodes
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Concluding Remarks
• From computation centric to communication 

centric architectures: Networks-on-Silicon will be 
at the heart of future platforms

• Digital architectures offer a wealth of 
implementation options. Therefore standardization
is key
– In interfaces, services, and protocols
– In design environments (including SDK)

• Automated flow with fast performance verification 
is essential.

• Towards an Open Platform and Ecosystem




