The Next Level Platforms: Networks-on-Silicon

Albert van der Werf

Philips Research

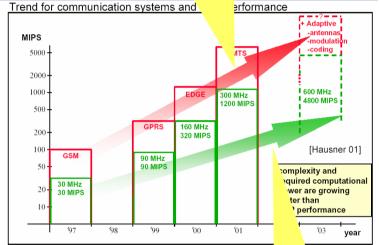
Overview

- Trends
 - Technology
 - Industry
- Networks-on-Silicon
 - Infrastructure
 - Mapping
 - Predictability
- Concluding Remarks

Trends

- Moore's Law is driving us

 ~60% yearly growth in number of transistors
- Enabling new products with
 - *lower* cost (mm²) and *lower* power (W) dissipation and
 - *higher* flexibility (MIPS) and functional performance (GOPS)


Moore's Law: Computational Efficiency

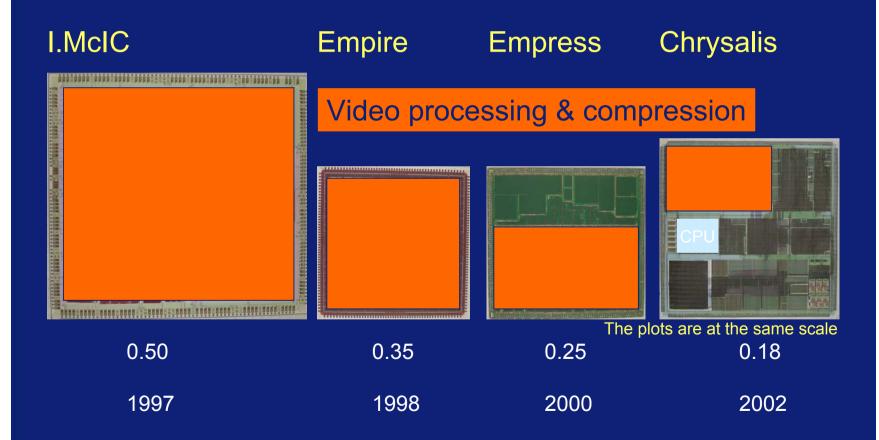
IN IN COLUMN

Computing efficiency (MOPS/mWatt) 1000 100 parallel **3DTV** 10 1 MP3 2222 ISProcessors 0.1 sequential 0.01 0.001 2 0.5 0.25 0.13 0.07 1 [Roza] 2003 feature size(µm) time 4 Research

Technology Trends

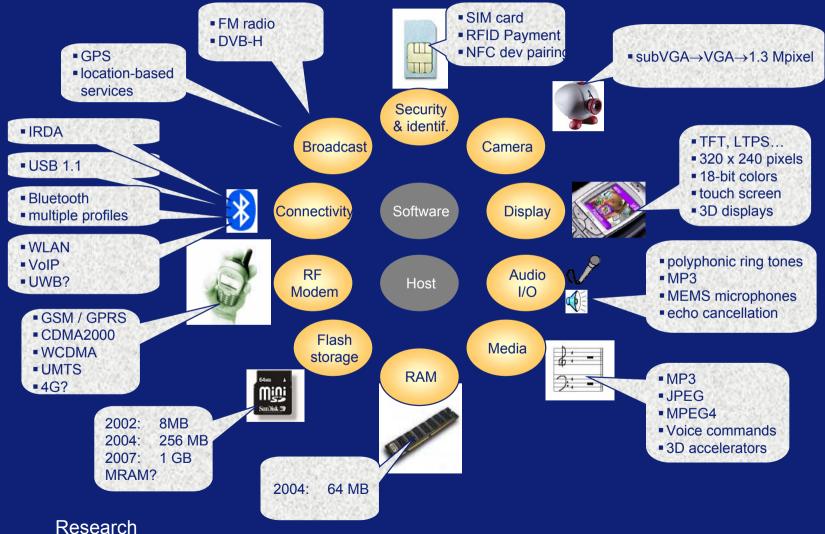
- System with one or more CPUs: Moore's law give cost down and feature-up.
 Trend for communication systems a
 - General Purpose processors are eating more of the current application pie (e.g. audio on CPU) – with IP in SW
 - Flexibility becomes more important but also more affordable
- New systems are demanding more compute power

Required by


wireless standards

th

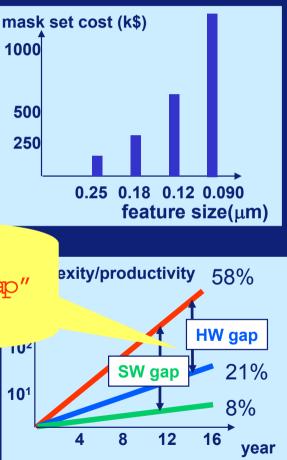
- Challenge/opportunity: high performance at low power requires (massive) parallelism
 - System customized compute engines
 - Multi-processor systems
 - Subsystem integration


Offered by conventional DSPs

MPEG2 Storage: IC Roadmap

In In

PHILIPS The OEM's integration problem

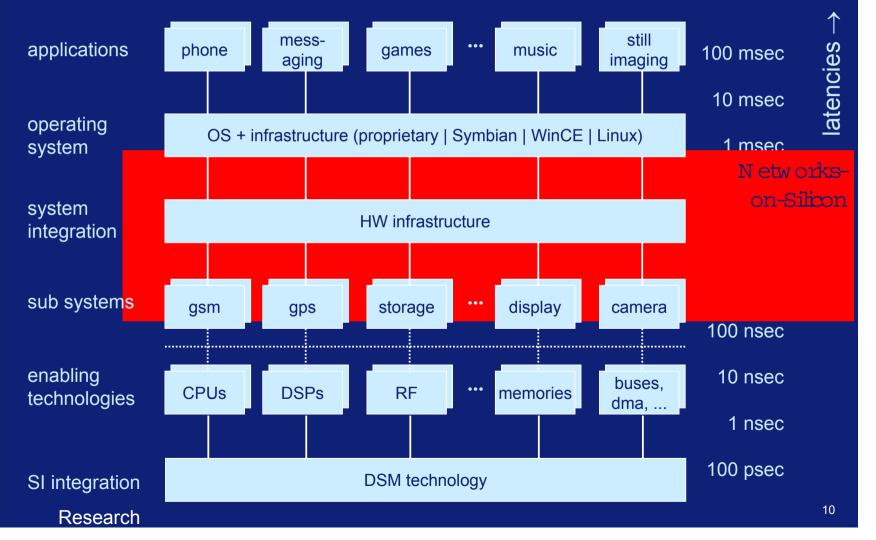


Industry Trends (Observations)

- Mask cost is increasing above a dangerous threshold.
- Design teams are becoming very large (> 100 FTE); design

"Cost of design is the greatest threat to continuation of the sem iconductor roadm ap" [ITRS 2003]

 Embedded SW content is exploding.


IN IN COLOR

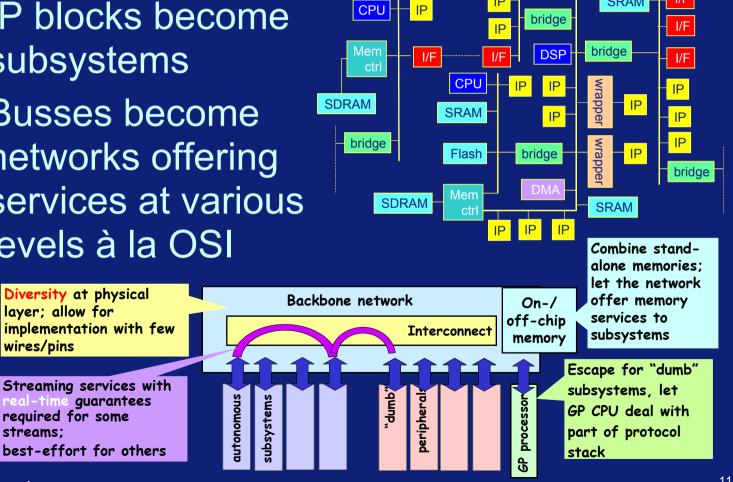
Industry Trends (Approach)

- Industry wide reuse of Intellectual Property (IP) blocks, from many IP suppliers; from captive cores to "open" cores with extensive *Ecosystems*
- Facilitated by platform choices (Nexperia Home/Mobile)
- From Application Specific ICs towards Programmable ICs for a certain Application Domain; product differentiation through SW.

Networks-on-Silicon: Positioning

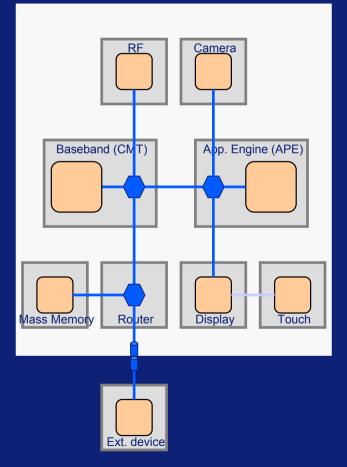
Milling The Party of Street, S

From Busses to Networks-on-Silicon


- IP blocks become subsystems
- Busses become networks offering services at various levels à la OSI

layer; allow for

required for some


wires/pins

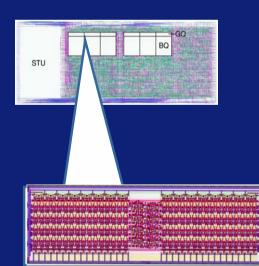
streams:

SRAM

Networks-on-Silicon: Connecting ICs

Million Providence

Networks-on-Silicon: Technology


- To solve the transport delay problem and to handle the complexity in future generations of SoC by defining the next generation paradigm for platforms.
 - Infrastructure and related design technology for communication.
 - To organize the communication according to a layered & standardized communication stack (OSI like).
 - To describe systems as networks and efficiently map programs on multiple processors in the network
 - To guarantee (predictable) performance and scalability with plug & play of subsystems.

IN IN COLUMN STREET

Networks-on-Silicon: Infrastructure

- Main active elements in network infrastructure: – network interface
 - router
 - ATM-like packet-based programming model
 - 52Gb/s aggregate throughput
- QoS
 - Guaranteed Throughput
 - Best Effort
- Supporting interoperability

Networks-on-Silicon: Inter-Chip Link

- Standardization of physical interconnect
 - For seamless links between chips
- From SiP up to box level
 - Multiple chips in different process technologies
- Transparent to IPs / subsystems on chips
 - Physical interconnect hidden by more abstract interface
 - Abstract interface supports re-partitioning with a different physical interconnect for on-chip communication

- Variety of classes: from Mbits/s up to Gbits/s

- CMOS
- Low swing differential
- Embedded clocks

Research

Audio, Compressed Video Standard resolution images High resolution images

Mapping Applications to Networks

System synthesis: minimal hardware that is required to meet the timing requirements as defined in the specification.

System programming: given a multiprocessor network find a mapping of the application that satisfies the timing constraints.

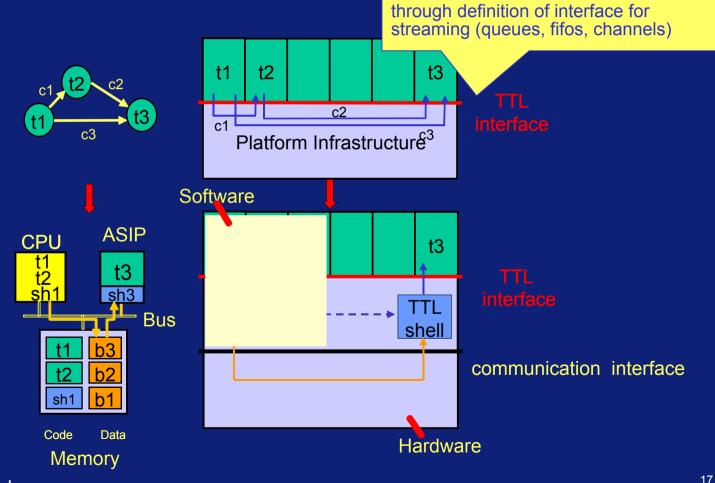
Application

- parallel tasks

IN IS

- streams

Mapping


- tasks to processors
- FIFOs to memory

Architecture

- multi-processor
- distributed shared memory

Networks-on-Silicon: Linking HW & SW

Goal is to facilitate reuse of tasks

Memory and Streaming

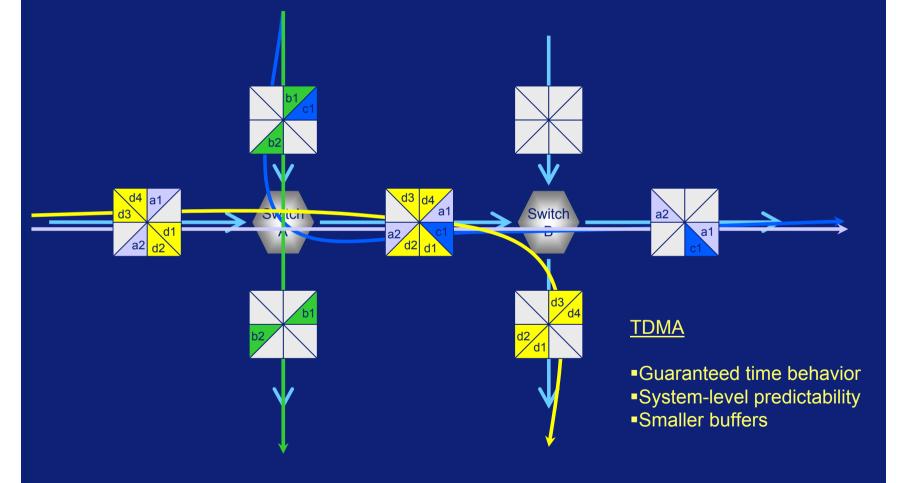
Support for streaming via on-chip memory

- Streaming via off-chip memory:
 - Bandwidth bottleneck
 - Power consumption
 - Pin count
- Streaming via on-chip memory
 - High sync rate is enabler (implementation challenge)
 - Small buffers (in distributed shared memory)
 - Low latencies

Predictable Multiprocessor Networks

- Meeting the temporal requirements is essential for many consumer systems.
 - Hard real-time:
 - don't miss a deadline (= guarantee throughput and latency)
 - graceful degradation is not supported
 - e.g. channel decoders, picture improvement, audio decoding

- Soft real-time:


- there is some diminished value when deadline is missed and value does not increase if result is delivered earlier
- graceful degradation or fall back must be supported
- objective is constant Quality of Service (QoS)
- e.g. video decoders
- Best-effort:
 - an earlier delivered result is appreciated
 - e.g. web browser

Related Models of Computation

- Kahn Process Networks [Kahn, 1974]
 - concurrent processes communicating through unbounded fifos
 - deterministic communication only
- Communicating Sequential Processes [Hoare, 1978]
 - concurrent processes communicating through unbuffered channels
 - non-deterministic communication through probe [Martin, 1985]
- Dataflow Process Networks [Lee and Parks, 1995]
 - special case of KPN; processes are actors plus firing rules
 - Fire & Exit: each iteration has to be one atomic action.
 Requires explicit state saving for data-dependent behavior
- Communicating Finite State Machines [Balarin et al., 1997]
 - broadcasting of time-stamped events
 - global notion of time difficult to implement in parallel and distributed signal processing systems

Research

Networks-on-Silicon: QoS

million and the second state

Multi-processor network nodes

- A number of (smaller processors) communication using a protocol with cache coherence extensions
- Each processor has its own L1 cache and shares an L2 cache with interleaved memory banks
- Escaping from Pollack's rule (exploding power densities for higher performant CPUs)

Concluding Remarks

- From computation centric to communication centric architectures: Networks-on-Silicon will be at the heart of future platforms
- Digital architectures offer a wealth of implementation options. Therefore standardization is key
 - In interfaces, services, and protocols
 - In design environments (including SDK)
- Automated flow with fast performance verification is essential.
- Towards an Open Platform and Ecosystem

