MPSoC'05 Conference

July 14, 2005

nfineon

Multithreaded Processors in Embedded Applications

Steffen Buch Senior Director Advanced Systems & Cicuits Infineon Technologies AG

Never stop thinking.

Infineon

MPSoC'05

Steffen Buch 2005-07-14

Infineon

Motivation: Design for Efficiency

- (Embedded) Standard Processor: **Performance driven** design
 - Large flexibility for a wide range of applications
 - Clock frequency has been a main feature
- (Deeply) Embedded Processor: Efficiency driven design
 => High performance with
 - Area efficiency: Throughput / Area (silicon cost)
 - Power efficiency: Throughput / Watt (battery cost)
 - Hardware design efficiency: design flow, reuse (design cost)
 - Software design efficiency: tool chain, programming model, API

Efficiency of Multi-Processor SoC

- Area efficiency $E_a = Th / S$ (internet packet per s per mm²)
- **Power efficiency** E_p = Th / P (internet packet per s per μ W)
- Throughput: Th = CR*L*M / CPI with
 - CR = clock rate
 - CPI = clocks per instruction (average)
 - L : speedup of ILP
 - M: speedup of parallel processors
- Key to achieve maximum efficiency
 - Reduce CPI i.e. reduce latencies of memory access, inter processor communication etc

MPSoC'05

Introduction to Multithreaded Processor

- Definition of HW-Thread
 - "Light process" ~ PC + register states
 - Each thread can be executed concurrently.

Motivation

- Communication Applications are multi-threaded in Nature
 - E.g. Functions for receive and transmit
 - Interrupt service routines for different interrupt sources
 - Independent packets
- Multithreading avoids latency
 - (Cache-)Memory access
 - Peripheral access
 - Inter-processor communication
- Multithreading allows extremely fast context switch
 - Interrupt service routines

MPSoC'05

Infineon

RISC-based load-store architecture with extensions optimized for Protocol Processing:

- Ports
 - Effective HW I/F integrated into ISA and pipeline
 - Enhancing data stream processing (Read-modify-write)
- Advanced bit-field manipulation
- Conditional execution
- Multithreading
 - exploiting the packet-level or link-level parallelism
 - fast context switch avoiding latency

MPSoC'05

Infineon

Case Study 1: Exploit Packet Level Parallelism

Case Study 1: Optimization of Number of Threads

- Optimization of number of contexts
 - CPI decreases with number of contexts
 - Area increases at the same time
 - How many threads can be utilized by application?

a: blocking probabilityn: # of threadsc: area overhead

MPSoC'05

Infineon

Case Study 2: TriCore 2 – Low Overhead Multi-Threading

Infineon

~5% area overhead, <1% performance impact

er^{stop}thinking

MPSoC'05

Steffen Buch 2005-07-14

Acknowledgements Dr. Xiaoning Nie, chief architect PP32 Dr. Ulf Nordqvist, hardware design & tools Dr. Jinan Lin, software concepts & benchmarking Dr. Reinhard Rückriem, mobile applications Prof. Dr. Lajos Gazei, fellow advanced systems & circuits

... on behalf of the Convergate project team

Glenn Farral, Tricore design team manager ... on behalf of the Tricore project team