

On-Chip Interconnects: Circuits and Signaling from an MPSoC Perspective

Wayne Burleson Associate Professor, Dept ECE University of Massachusetts Amherst <u>burleson@ecs.umass.edu</u>

My Perspective

- VLSI Signal Processing, BS/MS MIT 1983, PhD Colorado 1989
- Worked as a VLSI Designer (Fairchild, VTI) and teach VLSI Design
- Research in VLSI Circuits
 - Low-power (NSF, SRC)
 - Interconnects (SRC, Intel)
 - Wave-pipelining (NSF)
 - SRAM (Intel, CRL)
 - Soft-errors (Intel, MMDC)
- Research in VLSI Architecture
 - Adaptive SOC (NSF)
 - VLSI Signal Processing (NSF)
 - Video, 3D Graphics (NSF)
 - Embedded Security (HSARPA)

Application

Objectives

- Provide insight into on-chip interconnects from a circuit designer's perspective
- Survey recent research in on-chip interconnects
- Present MPSoC interconnect requirements and metrics
- Show how to compare circuit and signaling solutions
- Discuss the impact of **uncertainties** (process variation, noise, temperature)
- Show CAD support for interconnect design and estimation
- Some examples

On-Chip Interconnect: Levels of Abstraction

- Network level
 - CDMA
 - TDMA
- System level
 - Communication Links
 - Adaptive supply voltage links
- Architecture level
 - AMBA[™]
 - CoreConnect[™]
- Circuit level
 - Low Swing
 - Coding
 - Single / Differential

UMassAmherst MPSoC Interconnect Requirements

- Intra-core vs. inter-core,
 Bus-width (1,8,...32,64,...)
 Adjacent core vs. long-haul
 Repeated vs. unrepeated
 Single-cycle vs. pipelined
 Bus vs. point-to-point
 Synch vs. asynch
 Metrics:
 - •Latency
 - Bandwidth
 - Noise
 - Area
 - Power/Energy

Source : A. Jerraya, W. Wolf, **Multiprocessor Systems-on-Chips**, Elsevier 2005

UMassAmherst MPSoC NoC Interconnect issues

Granularity of cores, ie wirelength
Bus width
Network topology
Link layer (fault-tolerance, etc.)
Synchronous vs. Asynchronous

Source : Ahmed Jerraya, Wayne Wolf, **Multiprocessor Systems-on-Chips**, Elsevier 2005

UMassAmherst MPSoC "Bus" Alternatives

- Fixed Bus [Bergamaschi, DAC, 2000]
 - Point to point communication
 - Signals between cores transferred by dedicated wires
- FPGA-like Bus [Cherepacha, FPGA Sym, 1994]
 - Programmable interconnects
 - Employ static network
- Arbitrated Bus [IDT Inc., 2000]
 - Time-shared multiple core connectivity
 - Use arbitrator
- Hierarchical Bus [AMBA, ARM Inc]
 - Combine multiple buses using bus bridges
 - Separate buses for cores and I/O
- NoC Bus [Dally, DAC, 2000]
 - Resources communicate with data packets
 - Use switch fabric

Source : Jian Liang, **Development and Verification of System-on-a-Chip Communication Architecture**, *Ph.D. thesis, Department of Electrical and Computer Engineering*, University of Massachusetts, Amherst, May 2004

UMassAmherst SoC Bus Standards: CoreConnect[™] and AMBA[™]

	IBM CoreConnect Processor Local Bus	ARM AMBA 2.0 AMBA High-performance Bus	
Bus Architecture	32-, 64-, and 128-bits Extendable to 256-bits	32-, 64-, and 128-bits	
Data Buses	Separate Read and Write	Separate Read and Write	
Key Capabilities	Multiple Bus Masters 4 Deep Read Pipelining 2 Deep Write Pipelining Split Transactions Burst Transfers Line Transfers	Multiple Bus Masters Pipelining Split Transactions Burst Transfers Line Transfers	
	On-Chip Peripheral Bus	AMBA Advanced Peripheral Bus	
Masters Supported	Supports Multiple Masters	Single Master: The APB Bridge	
Bridge Function	Master on PLB or OPB	APB Master Only	
Data Buses	Data Buses Separate Read and Write Separate or 3-		

UMassAmherst Interconnect Geometry Scaling

Layer	Pitch	Thick	AspectRatio
	(nm)	(nm)	
Isolation	220	320	-
Polysilicon	220	90	-
Contacted gate pitch	220	-	-
Metal 1	210	170	1.6
Metal 2	210	190	1.8
Metal 3	220	200	1.8
Metal 4	280	250	1.8
Metal 5	330	300	1.8
Metal 6	480	430	1.8
Metal 7	720	650	1.8
Metal 8	1080	975	1.8

LAYER	PITCH	THICK	AR
Isolation	240	400	-
Poly-Si	260	140	-
Metal 1	220	150	1.4
Metal 2,3	320	256	1.6
Metal 4	400	320	1.6
Metal 5	480	384	1.6
Metal 6	720	576	1.6
Metal 7	1080	972	1.8

65nm Intel[©] Technology

90nm Intel[©] Technology

- Weak scaling of vertical dimension compared to horizontal dimension
- Extremely high height/width aspect ratios
- Reduces degradation of interconnect resistance

Interconnect RC Trend

RC/µm increases 40-60% per generation
 Copper, low-K dielectric: modest benefit 10

UMassAmherst Interconnect Distribution Trend

RC/μm scaling trend is only one side of the story... Average wire lengths don't scale well

Interconnect Power Consumption

- Using Vdd programmability
- High Vdd to devices on critical path
- Low Vdd to devices on non-critical paths
- Vdd Off for inactive paths
- A Baseline Fabric
- B Fabric with Vdd Configurable Interconnect

This work builds on a similar idea for FPGAs described in:

Fei Li, Yan Lin and Lei He. Vdd Programmability to Reduce FPGA Interconnect Power, IEEE/ACM International Conference on Computer-Aided Design, Nov. 2004

Interconnect Modeling

a.Capacitive model b.RC model c.RLC model

Massoud, Ckts and Devices Mag, 2001

Interconnect Issues – Signal Integrity

Ismail, TVLSI, 2002

- Inductance becoming important
- Self inductance results in ringing
- Mutual inductance results in crosstalk

Circuit and Signaling Solutions

- Conventional Circuit techniques
 - Repeater insertion
 - Booster insertion
- Low Swing techniques
 - Pseudo differential interconnect
 - Differential Current sensing
- Bus encoding techniques
 - Transition aware encoding
 - Low Power encoding for crosstalk reduction
- Signaling techniques
 - Multi-level signaling
 - Near speed of light signaling

Network

System

Circuit

Architecture

- Optimum repeater insertion reduces interconnect delay.
- Optimized energydelay tradeoffs used to satisfy design criteria.

UMassAmherst Interconnect Circuits - Repeaters

UMassAmherst Interconnect Circuits – Boosters

Interconnect Circuits - Low swing

- Reduce the swing on the interconnect
- Use a PMOS/NMOS device to provide a resistive path
- Reduces dynamic power since interconnect is not charged full rail.
- Noise immunity low at the output due to reduced swing
- Static power dissipation due to low impedance path

- Current mode, voltage mode
- Single ended, differential

UMassAmherst Interconnect Circuits – Low Swing

- Voltage mode
- Single ended
- One wire per bit
- Receiver not sensitive to supply variation

Pseudo Differential Interconnect

Schemes	Energy (PJ)			Delay (ns)		E•D	Swing	Complexity	
Drive	Driver/ Wire	Receiver	Total	Driver/ Wire	Receiver	Total	(PJ•ns)	(V)	Complexity
CMOS	11.45	0.15	11.6	1.64	0.47	2.11	24.5	2.0	least area overhead
PDIFF	1.32	0.60	1.92	1.65	0.75	2.40	4.6	0.5	timing, 1 REF

20

UMassAmherst Interconnect Circuits – Low Swing

- Current mode, Differential
- Avoids charging and discharging wire capacitance
- No repeaters along the wire: Avoids placement constraints
- Suffers from static power dissipation (paths shown by dashed lines)

Delay-Power tradeoffs

Delay vs. wirelength

Intel 90nm (wires with 2x min. width)

% chip coverage in n cycles

Percentage of Chip Coverage

Hybrid Repeaters & Current-sensing

UMassAmherst Eliminating bus static power dissipation

- Send current only when there is a transition
- Hold the bus at GND otherwise
- Encoder and decoder overhead

Interconnect Solutions - Bus Encoding

- Reduce dynamic power due to switching activity on a bus
 - Transition encoding, spatial encoding, invert encoding, pattern encoding
- Various encoding target different aspect of interconnect
 - Delay, power, energy, crosstalk, area
- Cost of encoding/decoding
 - Power, area, latency, additional wires

Interconnect Solutions – Bus encoding

- Uses a dynamic bus configuration
- Encoder translates input transition activity into an output logic state
- Decoder uses encoded signal to reconstruct the original input using its stored state information to distinguish between the two input transitions.

Interconnect Solutions - Bus Encoding

- Bus invert encoding
 - Checks each cycle if there is a possibility of greater than 50% transitions on the bus
 - Decides whether sending the true or compliment form of the signals
 - Reduces the switching activity
 - Requires one additional wire to inform receiver whether the bus is true or complement
 - Numerous extensions and improvements for different statistical assumptions and metrics

Stan/Burleson, TLVSI, 1997 29

UMassAmherst Multi-level Current Signaling

Multi-level Signaling

Current

Driver

b1Tx

b2Tx

• Encode two or more data bits and transmit on interconnect.

Interconnect

- The two or more data bits are encoded into four or more current levels. Current provides more head-room than voltage!
- Sense the current levels and decode the original signals

Phase Coding

- Actually phase modulation
- Transmitting multiple bits in one transition
 - Significant power and area savings
 - Increased bandwidth
- Phase coding Phase determines the data
- How to deal with timing uncertainty?

UMassAmherst Open Loop Phase Coding

- Delay elements can be shared across wires
- Supply noise, Process variation etc. can result in errors

Measured Results: Closed Loop

- 16-bit 5mm long bus, 0.27u wide, 0.27u spacing, shielded, 1GHz
- Repeater insertion, Transition encoding used
- Encode in $\frac{1}{2}$ cycle and use $\frac{1}{2}$ cycle for decode

Encoding Levels (bits/wire)	Encoder Overhead (mW)	Decoder Overhead (mW)	Phase coding power (mW)	Repeater bus (mW)
2	0.33	1.00	1.00 5.61	
3	0.47	1.33	5.01	8.56
4	0.62	1.52	4.28	8.56 33

Near Speed of light Signaling

 TABLE II

 Performance of Different Approaches to On-Chip Signaling

Signaling	Propagation Medium	Time of Flight for 20mm [ps]	Delay for 20 mm [ps]	Power [mW]	Comments
Modulation (This work)	Wide metal wircs $(c_r = 4)$	133	300	16	Large metal area
Repeaters	Min. sized metal wires $(e_r = 4)$	133	1400	30	Slow
	Wide metal wires $(e_r = 4)$	133	400	50	Large metal area, High power
Optics (Edge- Emitting) [11]	Air ($e_r = 4$)	66	300	80	Packaging, Integration issues
	On-Chip Waveguide $(e_r = 11.7)$	228	500	80	Integration issues
Optics (VCSEL) [11]	Air $(e_r = 1)$	66	400	60	Packaging, Integration issues
	On-Chip Waveguide $(e_r = 11.7)$	228	600	60	Integration issues

- 283ps for 20mm 16um wide AL wire in 0.18um CMOS tech
- Very wide, R~0
- Uses frequency modulation

Uncertainty - Process Variations

Nassif, ISQED, 2000

UMassAmherst Impact of Uncertainty on Delay and Power

- 100nm technology
- 1000 Monte Carlo Runs
- Power variability of 43.64%
- Delay variability of 28.95%
- 100nm Technology
- Bin 1(High Performance) Yield 36.1%
- Bin 2(Low Delay) Yield 27.3%
- Bin 3(Low Power) Yield 25.1%
- Bin 4(Low Performance) Yield 11.5%

UMassAmherst Uncertainty - Temperature Variations

- $_{\rm v}$ Leakage power significantly increases with temp. in 45 nm node.
 - \diamond parabolic curvature (y = Cx²) in terms of varying temperatures.
- v Higher temperature sensitivity (45 nm) on delay, power and leakage.

♦ Accurate RLC modelization to provide underestimation.

Uncertainty due to Power Supply Noise

Uncertainty – Variation-tolerant Design

- Razor methodology
 - A voltage-scaling methodology based on real-time detection and correction of circuit timing errors
 - Allows for energy tuning of microprocessor pipeline
 - Application or Razor methodology results in up to 64% energy savings with less than 3% delay penalty for error recovery

UMassAmherst Interconnect test chips

CAD Support

• GTX (SRC-MARCO)

– A GSRC Technology Extrapolation System

- NoCIC (UMASS)
 - SPICE-based Interconnect Calculator for aggressive Circuit techniques (currentsensing, multi-bit sensing, boosters, etc.)

Repeater Optimization using GTX

- Most commonly cited optimal buffer sizing expression (Bakoglu)
- In GTX:
 - Sweep repeater size for single stage in the chain
 - Examine both delay and energy-delay product

UMassAmherst Inductance analysis using GTX

- Five different models implemented in GTX
 - Bakoglu's model (RC_B)
 - [Alpert, Devgan and Kashyap, ISPD 2000] (RC_ADK)
 - [Ismail, Friedman and Neves, TCAD 19(1), 2000] (RLC_IFN)
 - [Kahng and Muddu, TCAD 1997] (RLC_KM)
 - Extension of [Alpert, Devgan and Kashyap, ISPD 2000] (RLC_ADK)

A snapshot of NoCIC

_ 0 🛛

v

New Page 1 - Microsoft Internet Explorer provided by Comcast

File Edit 🤲 🕥 - 🕥 - 💽 🙎 🔥 👳 🙆 Address 🛃 C: Oocuments and Settings Wishak. Venkatraman/Desktop/Siz04_presentation/EDVAL_NOC.htm

NoCIC : Network-on-Chip Interconnect Calculator

UMassAmherst Case Study : MPSoC with NOC

Venkatraman, SLIP, 2003

* J. Liu et.al System level interconnect design for network-on-chip interconnect IPs, *in proceedings of the international workshop on System level interconnect prediction, SLIP 2003.*

Case-Study: On-Chip Security

(Burleson, Tessier, Gong, Wolf, Gogniat, 2005)

- On-chip monitoring and security bus
- Latency-critical for fast detection and mitigation of attacks
- Improved power, performance and security over software-based defenses

CM = Configurable Monitor OCIN = On-Chip Intelligence Network

Conclusions & Challenges

- Interconnects are a critical enabling abstraction in MPSoC
- Interconnects play a very large and increasing role in delay, energy, and design effort.
- Interconnect can be solved simultaneously at the micro-architectural, circuit and process levels
- Aggressive circuit and signaling techniques show promise with minimal architectural impact
- CAD support needed, especially
 - early estimation for architecture and floorplanning
 - final verification in the presence of uncertainties

VLSI Interconnects: A Design Perspective,

W. Burleson and A. Maheshwari Morgan-Kaufmann. 2005(6)

- 400-page textbook with HW problems, covering:
 - History (both off-chip and on-chip)
 - Process (metallization, dielectrics, etc.)
 - Architecture (processor, ASIC, FPGA, memory)
 - Theoretical models (graph, information-theoretic)
 - Wire models (R,C,L,M,...)
 - Circuits (repeaters, boosters, sense-amps, etc.)
 - CAD (estimation, synthesis, optimization)
 - Case Studies (buses, memories, ASIC, FPGA)
 - Future (nano, optical, wireless, etc.)

UMASS Interconnect Circuit Design Group

- Students:
 - Vishak Venkatraman (internship at CRL, PhD 06)
 - Jinwook Jang (MS 05, PhD 08)
 - Sheng Xu (new Sept 04)
 - Ibis Benito (new Jan 05)
 - Atul Maheshwari (now at Intel)
 - Matt Heath (now at Intel)
 - Aiyappan Natarajan (now at AMD)
 - Vijay Shankar (now at Qualcomm)
 - Anki Nalamalpu (now at Intel)
- Collaborators:
 - Sandip Kundu (UMASS/Intel/IBM)
 - Russ Tessier, Israel Koren, Aura Ganz (UMASS)
 - Shubu Mukherjee, Rich Watson, (Intel MMDC)
 - SRC liasons (Intel CRL, Freescale)

- Alums
 - Manoj Sinha (now at Micron)
 - Chris Cowell (now at Intel)
 - Sriram Srinivasan (now at AMD)
 - Andrew Laffely (now Prof at USAFA)
 - Srividya Srinivasaragavan (now at Intel) ⁵⁰