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Introduction

• MpSoC platforms are heterogeneous 

– components

– networks

– communication 

– scheduling (static, event, timing)

– ...

• complex dependencies and dynamic changes threaten 
design robustness

• verification is increasingly difficult and cannot easily 
capture all effects of concurrency 

• problems well known from distributed real-time systems  
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Example: Automotive

• non-functional dependencies of different subsystems – problem
grows with system size
(e.g. networks replacing buses)
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Modeling requirements

• optimization requires appropriate modeling

• simulation models

– (detailed) HW behavior models

– currently used in simulation based design space exploration

– simulation time consuming – constrains optimization

– executable code often not available at architecture design time

– modeling flexibility requirements (“slack”) is difficult

• non-executable models for optimization

– capture abstract resource load, timing relation and 
dependencies 

– various model semantics including models with interval and 
stochastic properties
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A popular simple model

• reduction of dynamic effects to average or integral values

• allows application of weighted graph algorithms → fast

• frequently used in optimization tools

• no executable specification required  

• does not reflect dynamic effects of transient loads, jitter, 
deadlines, buffer memory  
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Modeling dynamic effects with streams

• replace discrete signal values by event streams S

• S is tupel with model dependent components 
period, minimum distance, jitter, burst, ...

• standard model used in real-time system analysis

• applicable to processors and communication

• many algorithms available

• successfully used in automotive systems optimization

• commercial tools by Volcano, ETAS, ... 
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Required stream analysis input

• processes and communication models

– execution time (interval)

– communication volume (interval)

– activation rules (time, event)

– dependencies (e.g. task graph, cycles, transactions, ...)

• component models

– available performance/bandwidth

– scheduling strategies (processors and communication)

• objective functions and constraints (for interactive 
exploration)
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Analysis example: Formal Analysis by Lehoczky
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Analysis uses “Busy Window” approach
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A generalized approach: Network calculus 

• uses arrival curves

– η+(Δt) maximum number of activating events occuring in time 
window Δt

– η-(Δt) minimum number of activating events occuring in time 
window Δt

– d– minimum event distance - limits burst density

• processing represented by corresponding service curves

• used in networking applications

• requires new analysis algorithms → real time calculus
(Thiele et al.)
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Example: Periodic signal with jitter J

• Event curves η(Δt) describe upper and lower bounds of 
events in time Δt
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Component I/O function

• analysis provides stream I/O function

• input stream interpreted as activation or „register“ (time 
triggered scheduling)
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Compositional approach to global modeling

• independently scheduled subsystems are coupled by data flow

• enables analysis of differently scheduled components

⇒ subsystems coupled by streams

⇒ coupling corresponds to event propagation
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Event propagation and analysis principle

environment model 

local analysis

derive output event model 

map to input event model 

until convergence or non-schedulability

• very flexible and composable !
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Enhancements

• parameters given as worst case or intervals

• task dependencies: task graphs, cycles

• stream properties may depend on system state

– system scenarios

• memory access models

• stochastic stream properties

– analysis using Markov Chains (Eles et al.) 

– very time consuming, new analysis algorithms required
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Formal analysis applications

• performance, load, delay, jitter, (buffer) memory analysis 
(see also MpSoC 2004) 

– covers advanced techniques such as traffic shaping

• design space exploration (very fast!)

• sensitivity analysis (robustness)

• first commercial tools for compositional techniques 
available (SymTA/S of SymTAVision) 

– currently applied to message passing systems (VW, Bosch, 
BMW, )
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Example Application of Compositional Analysis
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Sensitivity Analysis Results - Example
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SymTA/S Screenshot
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Conclusion

• event stream models are a powerful basis for fast 
optimization considering dynamic effects

• scalable via flexible composition rules 

• supports sensitivity analysis to identify available 
“headroom” in a design and detect critical spots

• few data needed that are typically available at system 
specification

• first commercial tools available 


