MPSoC Clock and Power Challenges

Olivier Franza Massachusetts Microprocessor Design Center Digital Enterprise Group Intel Corporation

July 14th, 2005

Copyright © 2005 Intel Corporation Other names and brands may be claimed as the property of others

Outline

Current Challenges
Industry Examples
Future Directions
Summary

Definitions

Power

The rate at which work is done, expressed as the amount of work per unit of time in Watts
In a microprocessor:

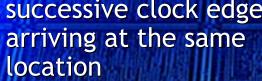
 $P = \alpha C V^2 F + V I_{leak}$ α activity factor C switching capacitance V power supply voltage F clock frequency $I_{leak} \sim exp(-qVt/kT)$ leakage current Vt threshold voltage

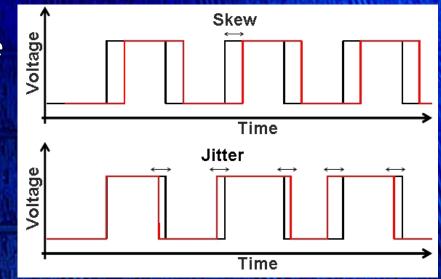
The lower, the better... Clock is a key consumer of microprocessor power

Definitions

Clock

Source of regularly occurring pulses used to measure the passage of time


 Heartbeat of synchronous digital systems: stability, regularity, accuracy, repeatability, and reliability all highly important


Skew

 Spatial inaccuracy of same clock edge arriving at various locations

 Jitter (cycle-to-cycle)

 Temporal inaccuracy of successive clock edges

Objectives

- Ideal clock scenario
 Zero skew, zero jitter
 - Perfect duty cycles
 - Short sharp rise and fall times, rail-to-rail signal
 - Low power consumption

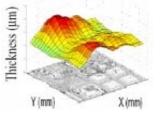
Infinite frequency granularity, instantaneous dynamic frequency and voltage control

In reality

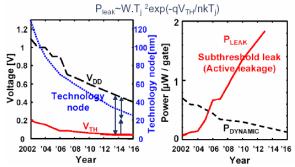
- Non-zero skew, non-zero jitter
- Non-perfect variable duty cycle
- Noticeable rise and fall times, overshoots and undershoots
- Clocks account for up to 50% of total power budget
- Discrete frequency space, dynamic control schemes uncommon

What challenges these objectives?

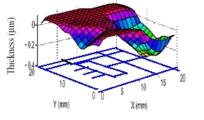
Technology Scaling

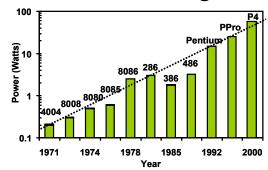

Increased uncertainty with process scaling

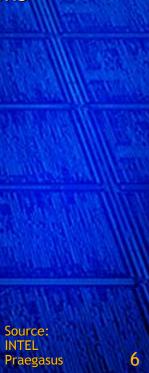
- Process, voltage, temperature variations, noise, coupling


- Affects design margin \rightarrow over design, power & performance loss Increased power constraints

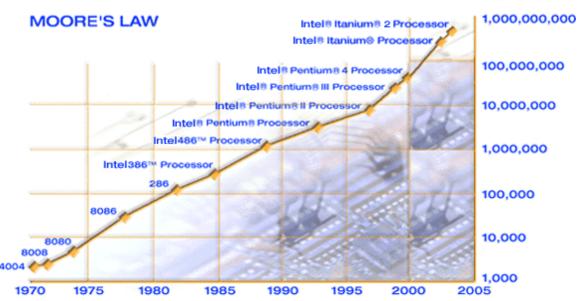
Increasing leakage, power (density, delivery) limitations


Cu Thickness Variation


Voltage/Leakage Scaling



ILD Thickness Variation

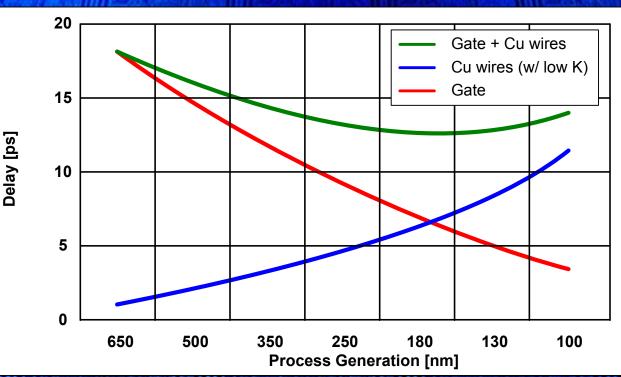

Power Scaling

Transistor Count

- Moore's law increases logic density and "time-to-market" pressure
- More transistors mean:
 - Larger clock distribution networks
 - Higher capacitance (more load and parasitics)

transistors

Source: INTEL


Interconnect Delay

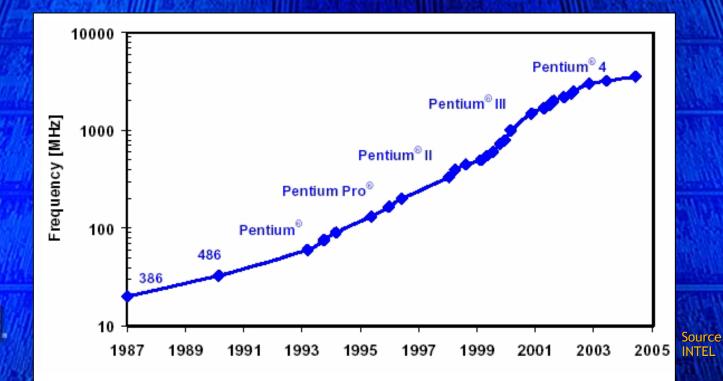
inta

- With each new technology:

- Gate delay decreases ~25%
- Wire delay increases ~100%
- Cross-chip communication increases

Clock needs multiple cycles to cover die

Source:

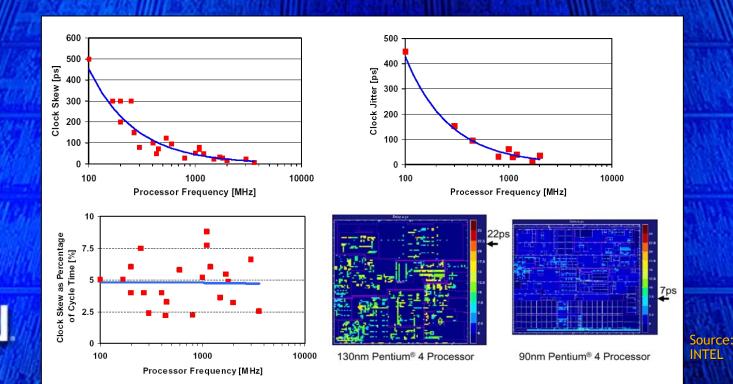

SIA NTRS Projection

8

Clock Frequency

End of frequency paradigm

- Power is linearly related to frequency with no voltage scaling
- Power is cubically related to frequency and voltage scaling
 - Performance is not linearly related to frequency



Clock Skew and Jitter

inte

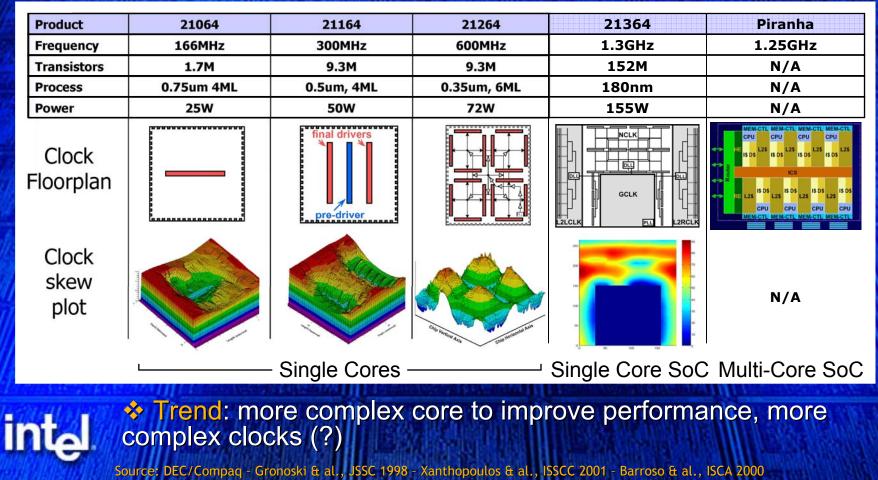
- Can clock skew remains at ~5% of total clock budget?

- 50ps at 1GHz, 5ps at 10GHz...
- Additionally, setup and hold time increases
 - "Useful" cycle time margin decreases

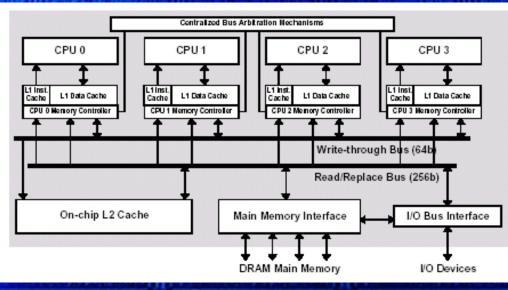
Summary

Increased transistor density More uncertainty with process scaling Larger microprocessors - 100 Million ~ 1 Billion transistors/chip Reduced power margins Power-aware and power-constrained design necessary Very high speeds - Multiple GHz clock rates still required Shrinkage of useful cycle time and margins Clock and skew targets harder to meet

Clock and power design becomes increasingly challenging


Outline

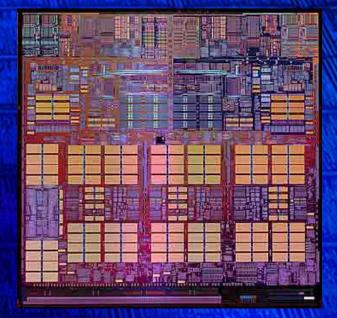
Current Challenges
Industry Examples
Future Directions
Summary


SPSoC Microprocessors

DEC/Compaq Alpha

MPSoC Microprocessors

- Stanford Hydra CMP
 - 4 processors
 - Shared L2 cache
 - 2 internal buses



Trend: multiple simple cores on die, bus communication, shared cache

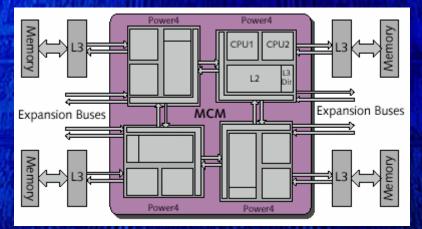
Source: Stanford University - K. Olukotun & al., Computer'97

MPSoC Microprocessors

- IBM Power4
 - 2 cores
 - F = 1.4GHz
 - Single clock over entire die
 - Balanced H-tree driving global grid
 - Measured clock skew below 25ps
 - Power ~85W
 - When processing requires high throughput instead of single stream performance complexity, one core can be turned off

- 180nm SOI process, 174M transistors

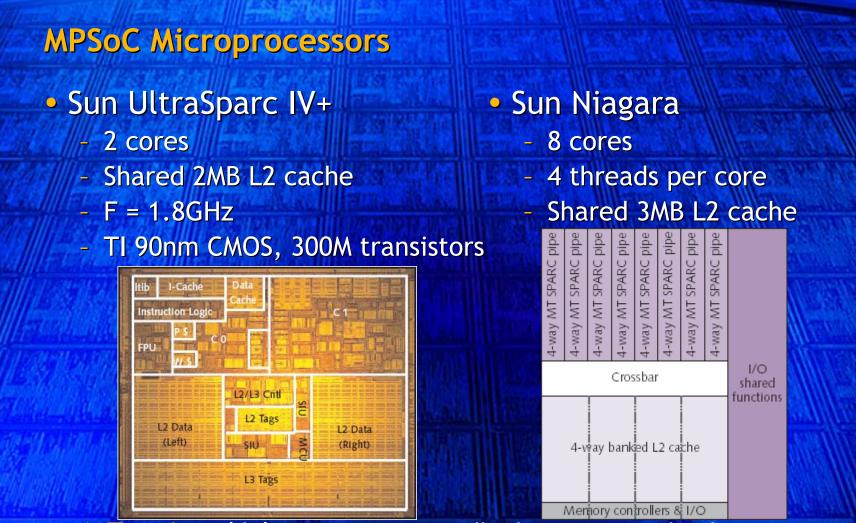
intel s


Trend: multiple processors on die, bus communication, shared cache

MPSoC Microprocessors

IBM Power4

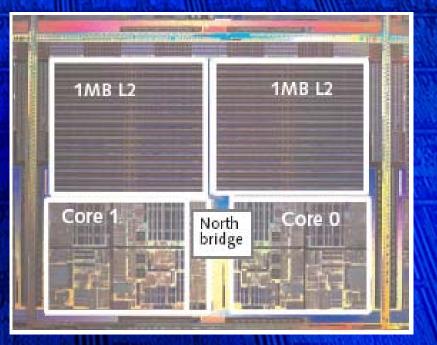
4 POWER4 chips into single module (MCM)


- The POWER4 chips connected via 4 128-bit buses
- Up to 128MB L3 cache
- Bus speed ½ processor speed
- Total throughput ~35 GB/s

intel

Trend: multiple processors on MCM, on module bus communication, huge cache

Source: IBM - P. Walling & al., EPEP, 2001, C. Anderson & al., ISSCC 2001

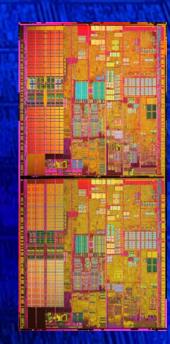

Trend: multiple processors on die, bus communication, shared cache

Source: SUN - L. Spracklen & al., HPCA 2005 - P. Kongetira & al., IEEE Micro 2005.

inta

MPSoC Microprocessors

- AMD Dual Core Opteron
 - 2 Cores
 - F = 1.8GHz
 - 106M transistors
 - P = 70W
 - HyperTransport I/O
 - 2 1MB L2 caches
 - 220M trasnsistors

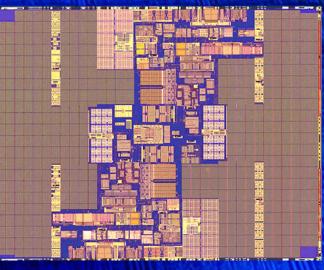


Trend: multiple processors on die, bus communication, unshared cache

Source: AMD - K. McGrath, FPF 2004

MPSoC Microprocessors

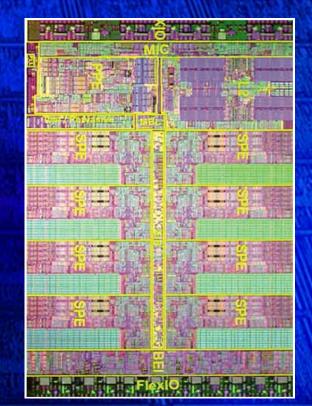
- Intel® Pentium® D
 Two Processors on MCM
 - 2 1MB L2 caches
 - 90nm CMOS
 - F = 3.2GHz
 - 230M transistors



Trend: multiple processors on MCM, unshared cache

MPSoC Microprocessors

- Intel® Itanium® Montecito
 2 cores
 - F ~ 1.5GHz
 - P = 100W
 - 90nm CMOS, 1.72B transistors
 - 2 12MB L3 asynchronous caches
 - 596mm2
 - Multiple clock domains
 - Foxton power management circuitry
 - Dynamic voltage and frequency adjustment
 - Based on current and noise sensing


intel

Trend: multiple cores on die, bus communication, unshared cache

Source: INTEL - S. Naffziger & al., ISSCC 2005

MPSoC Microprocessors

- STI (Sony, Toshiba, IBM) Cell
 - 9 Cores / 10 Execution threads
 - F = 4.6 GHz @ V = 1.3v
 - Covers 85% of die
 - P = 50 ~ 80W (estimated)
 - 512KB L2 Cache
 - Die Size: 221 mm²
 - 234M Transistors
 - 90nm SOI technology (Low K, 8 layers, Cu interconnect)
 - 6.4GT/s I/O interface
 - 4 x 128 bit internal bus (ring)

Trend: multiple mixed processors on die, bus communication, shared cache

Summary

inta

 Microprocessor industry seems to lean towards similar MPSoC models:

- Multiple leveraged processors on die
- Bigger shared caches
- On-die communication between processors
- High-speed I/O links
- Impact on clocks
 - Global clocking solutions are not likely
 - Modularity is required
 - Die size is overwhelming
 - Multiple smaller, "simpler" clock domains
 - Easier local design, better skew and jitter control
 - Global communication is still a challenge

Synchronous, asynchronous?

Summary

- Microprocessor industry seems to lean towards similar MPSoC models:
 - Multiple leveraged processors on die
 - Bigger shared caches
 - On-die communication between processors
 - High-speed I/O links
- Impact on power
 - Power envelope is not increasing!
 - Multiple clock domains allow for more power control
 - More dynamic voltage/frequency scaling
 - More meticulous clock gating schemes
 - Power management becomes paramount

Needs to monitor temperature, core activity, load balancing...

Multiple power domains should be next...

Summary

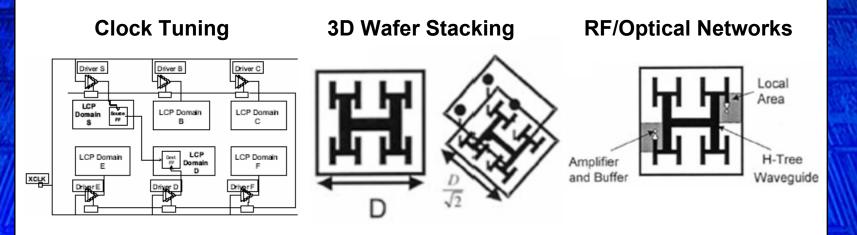
Increased clock and power complexity

- Clock distribution coverage area growth
 - More modular and efficient solutions required
- Collapse of single-clock paradigm
 - Multiple clock domain partitioning advantage
 - Data transfer between domain complication
- Static voltage and frequency approach fracture
 - Voltage and frequency scaling necessary to reduce power
 - Efficient power management and leakage control required
 - Dynamic clock generation scheme emergence
 - Integration of power management on die required
 - Multitude of sensors (temperature, voltage, activity...)
 - Control of power and frequency levels globally, regionally, possibly locally

Impact on future directions

Outline

Present Challenges
Industry Examples
Future Directions
Summary


Clock Distribution

- Multiple clock domains
 - Low skew and jitter ALWAYS a must
 - Clock modeling requires more accuracy
 - Within-die variations, inductance, crosstalk, electromigration, self-heat, ...
 - Floor plan modularity
 - Think adding/removing cores seamlessly!
 - Hierarchical clock partitioning
 - Reduce global clock and possibly relax its requirements
 - Generate "locally"-used clock "locally"
 - Implement clock domain deskewing techniques
 - Bound clock problem into simple, reliable, efficient domains

Clock Distribution

- Multiple clock domains
 - Global clock interconnect is challenged
 - Exotic options are being investigated

Data transfer between clock domains

Latency and determinism issues GSLS/GALS/GALA options?

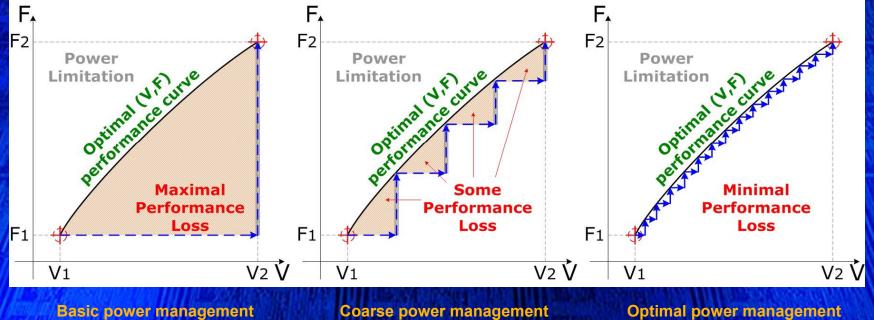
Source: J. Schutz, C. Webb, "Scalable x86 CPU design for 90nm", ISSCC 2004 K. Chen & al., "Comparison of Conventional, 3-D, Optical, and RF Interconnects for On-Chip Clock Distribution"

Asynchronous Logic

- Advantages...
 - Performance
 - Potentially higher
 - Not limited by slowest component
 - Power
 - Potentially much lower
 - No clock power overhead
 - Inactive components consume "only" leakage power
 - Better EMI
 - Design Complexity
 - Easier circuit synthesis
 - Possibly more scalable (no timing issues)
 - Synchronization with clock domains requires no clock relationship (handshaking, flow control)

Asynchronous Logic

- Disadvantages
 Performance
 - Area penalty for similar functionality


Power

- Extra components consume power
- **Design Complexity**
 - Potentially more complex circuit design
 - Vulnerable to circuit glitches
 - Test and debug more complex
 - Lack of CAD Tools
- Asynchronous products exist!
 - Embedded processors from Philips Semiconductors, Motorola...

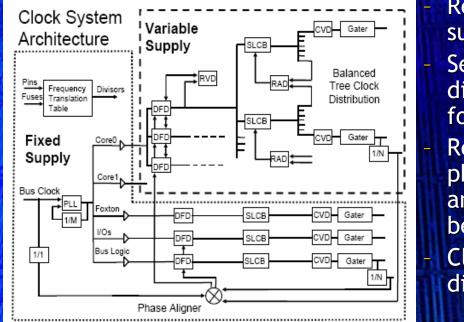
Clock and Power Convergence

Dynamic voltage and frequency scaling (DVS)
 Graphical representation

Static power management Static frequency scaling

Static frequency scaling

Optimal power management Dynamic frequency scaling


Clock and Power Convergence

- Dynamic voltage and frequency scaling (DVS)
 Dynamic frequency control
 - PLL-based schemes are not optimal for such tasks
 - More digital solutions start being proposed (Intel Itanium's Digital Frequency Divider)
 - Dynamic power management
 - Requires early micro-architectural estimation
 Power state definition (on, idle, off, ...)
 - System complexity increases with number of parameters
 - Number of cores, threads, ...
 - Additional on-die logic blocks
 - Microcontroller
 - Sensors of all kinds
 - Close interaction with clock system
 - Powering off functional units, cores, ...
 - Slowing down functional units, cores, ...

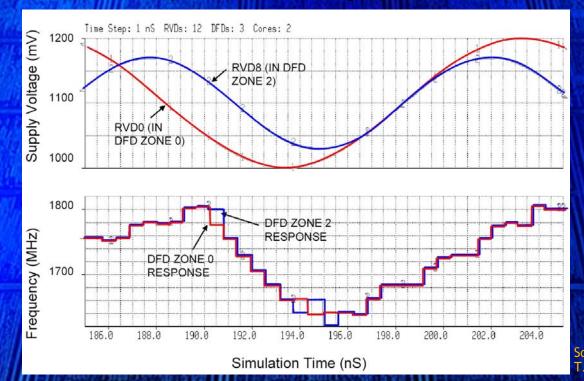
Clock and Power Convergence

- Intel® Itanium® Montecito Clock system architecture
 - Each core split into 3 clock domains on variable power supply
 - Each domain controlled by Digital Frequency Divider (DFD) generating low-skew variable-frequency clocks; fed by central PLL and aligned through phase detectors

Regional Voltage Detector (RVD): supply voltage monitor Second level clock buffer (SLCB): digitally controlled delay buffer for active deskewing Regional Active Deskew (RAD): phase comparators monitoring and adjusting delay difference between SLCBs Clock Vernier Device (CVD): digitally controlled delay buffer

Clock and Power Convergence

- Intel® Itanium® Montecito Power management (Foxton)
 - Dynamic voltage-scaling power management system
 - 4 on-die sensors
 - On-die microcontroller
 - Power and temperature measurement
 - Voltage and frequency modulation
 - 8µs power/temperature sampling interval
 - Embedded firmware
 - Power, temperature, or calibration measurements
 - Power: closed-loop power control and system stability check
 - Temperature: thermal sensor readout (junction temperature below
 - 90°C monitoring) and power-control communication
 - Calibration: power-measurement accuracy check


inte

Clock and Power Convergence

Intel® Itanium® Montecito - Noise management

Voltage to Frequency Converter (VFC): dynamic core frequency adjustment as a function of voltage

VFC locks onto and tracks local supply voltage with RVD 4 RVDs per DFD controlling VFC

Source: INTEL -T. Fisher & al., ISSCC 2005 34

Summary

Clock and power designs trends

- Increased transistor density, larger microprocessors
- GHz+ frequencies, shrinkage of useful cycle time and margins
- High-quality clock design ALWAYS aimed towards low skew, low jitter, low power

Convergence of clock and power designs

- Multiple clock domains (synchronous or not)
 - Hierarchical clock complexity
- Dynamic voltage and frequency scaling
 - Dynamic frequency generation systems
 - Dynamic power management systems
 - Close interaction for maximum performance

Clock generation and distribution are essential enablers of microprocessor performance

Acknowledgments

Thanks to all my colleagues within Intel and the engineer community at large for providing the technical innovations contained in the several microprocessors I discussed today

