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Current Challenges

Definitions

e Power

- The rate at which work is done, expressed as the
amount of work per unit of time in Watts

- |In a microprocessor:
P=aCVZ F+Vl_,

o activity factor
C switching capacitance
V power supply voltage
F clock frequency
Lok ~ exp(-qVt/KT) leakage current
Vt threshold voltage

- The lower, the better...
-/ Clock is a key consumer of microprocessor power
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Current Challenges

Definitions

* Clock

- Source of regularly occurring pulses used to measure the
passage of time

- Heartbeat of synchronous digital systems: stability,
regularity, accuracy, repeatability, and reliability all highly
important

s Skew

- Spatial inaccuracy of same
clock edge arriving at
various locations

Time

e Jitter (cycle-to-cycle) Jitter

- Temporal inaccuracy of
successive clock edges

- arriving at the same
"Tl'el location




Current Challenges

Objectives

* |deal clock scenario

Zero skew, zero jitter
Perfect duty cycles

Short sharp rise and fall
times, rail-to-rail signal

Low power consumption

Infinite frequency
granularity, instantaneous
dynamic frequency and
voltage control

* In reality
» Non-zero skew, non-zero jitter
» Non-perfect variable duty cycle

» Noticeable rise and fall times,
overshoots and undershoots

» Clocks account for up to 50% of
total power budget

» Discrete frequency space,
dynamic control schemes
uncommon



Current Challenges

Technology Scaling

- 'Increased uncertainty with process scaling

- Process, voltage, temperature variations, noise, coupling

- Affects design margin - over design, power & performance loss
- Increased power constraints
- |Increasing leakage, power (density, delivery) limitations
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Current Challenges

Transistor Count

- 'Moore’s law increases logic density and “time-to-market”
pressure
- More transistors mean:
- Larger clock distribution networks
- Higher capacitance (more load and parasitics)
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Current Challenges

Interconnect Delay

- 'With each new technology:
- Gate delay decreases ~25%
- Wire delay increases ~100%

- Cross-chip communication increases
- Clock needs multiple cycles to cover die

Gate + Cu wires
Cu wires (w/ low K)
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Current Challenges

Clock Frequency

- End of frequency paradigm

- Power is linearly related to frequency with no voltage scaling
- Power is cubically related to frequency and voltage scaling
- Performance is not linearly related to frequency
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Current Challenges

Clock Skew. and Jitter

- 'Can clock skew remains at ~5% of total clock budget?

- 50ps at 1GHz, 5ps at 10GHz...
- Additionally, setup and hold time increases
“Useful” cycle time margin decreases
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Current Challenges

Summary

* Increased transistor density
- More uncertainty with process scaling

* Larger microprocessors

- 100 Million ~ 1 Billion transistors/chip
* Reduced power margins

- Power-aware and power-constrained design necessary
* Very high speeds

- Multiple GHz clock rates still required

* Shrinkage of useful cycle time and margins
- Clock and skew targets harder to meet

tal

11



Outline

* Current Challenges
o Industry ' Examples
* Future Directions

* Summary

12



Industry Examples

SPSoC Microprocessors

 DEC/Compaqg Alpha

Frequency |  166MHz |  300MHz | 600MHz | = 1.3GHz |  1.25GHz
Transistors | a7 | 93 | 93 |  1s2Mm | @ N/A
Process | 075um4ML | O5um 4ML | 035um6ML |  180nm | @ N/A

fII'I.'i| driv er';

Clock
Floorplan

Clock
skew
plot

Single Cores Single Core SoC Multi-Core SoC

- *» Trend: more complex core to improve performance, more
'l'e' complex clocks (?)

Source: DEC/Compaq - Gronoski & al. ! ISSC 1998 - Xanthopoulos & al., ISSCC 2001 - Barroso & al., ISCA 2000
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Industry Examples

MPSoC Microprocessors

e Stanford Hydra CMP

intal

- 4 processors
- Shared /L2 cache
- 2 internal buses

Contralized Bus Arbkration Mechanisms

Read/Raplace Bus [256h])

L ThI i R
I-_-_-

Main Memory Intarface 1/ Bus Intarface

DRAM Main Mamaorny 10 Devices

*» Trend: multiple simple cores on die, bus communication,
shared cache

Source: Stanford University - K. Olukotun & al., \Computer’97
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Industry’ Examples

MPSoC Microprocessors

* |IBM Power4

2 cores
F=1.4GHz

Single clock over entire die
- Balanced H-tree driving global grid
- Measured clock skew below 25ps

- Power ~-85W

- When processing requires high
throughput instead of single stream =l |
performance complexity, one core . - —
can be turned off

- 180nm SOI process, 174M transistors
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- *» Trend: multiple processors on die, bus communication,
|nte|_ shared cache

Source: IBM - J. M. Tendler & al., IBM . R&D 2002 15



Industry Examples

MPSoC Microprocessors

* |BM Power4

- 4 POWER4 chips into single module (MCM)
- The POWER4 chips connected via 4 128-bit buses
- Up to 128MB L3 cache

- Bus speed 2 processor speed
- Total throughput ~35 GB/s

Powerd

- < Trend: multiple processors on MCM, on module bus
U,_ communication, huge cache

Source: IBM - P. Walling & al., EPEP, 2001, C. Anderson & al.;, ISSCC 2001
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Industry E)_(ar_nples

MPSoC Mlcroprocessors

e Sun UltraSparc IV+ * Sun Niagara
- 2 cores - 8 cores
- Shared 2MB L2 cache - 4 threads per core
- F=1.8GHz - Shared 3MB L2 cache

- T1 90nm CMOS, 300M transistors
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Source SUN - L. Spracklen & al., HPCA 2005 - P. Kongetira &al., IEEE Micro 2005.

Inl I % Trend: multiple processors on die, bus communlcatlon
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Industry Examples
R

MPSoC Microprocessors

e AMD Dual Core Opteron
- 2 Cores
- F =1.8GHz
- 106M transistors
- P =70W

- HyperTransport 1/0
- 2 1MB/ L2 caches
- 220M trasnsistors

*» Trend: multiple processors on die, bus communication,
unshared cache

Source? AMD ; K. McGrath; FPF 2004 | | I'
/] |
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Industry Exaﬁ'bles

LB
MPSoC Mlcroproces$ors

U IntelQ Pent1um® D)
- Two Processors on MCM
- 2 1MB L2 caches
- 90nm CMOS
- F = 3.2GHz
z 230Mj,-fransistors

'

I,*I w rdlh *» Trend: multiple processors on MCM, unshared cache
. |nte| | |

Source: INTEL - P. Gelsinger, IDF 2005“I i\
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Industry, Examples
L-J;r Iﬁ'\*f l
MPSoC Mlcroprocessors

. Intel® Itamum® Montecito

- 2cores
- F~1. 5GHz
- P = 100W

90nm CMOS, 1.72B transistors i
2 12MB L3 asynchronous caches |

596mm?2 e
Multiple clock domains

Foxton power management c1rcu1try
- '‘Dynamic voltage and frequency adjustment
- Based on current and noise sensing

*» Trend: multiple cores on die, bus communication,

unshared cache

Sourcé INTEL - S: Naffziger & al., ISde 2005

.’r." | i
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Industry Examples

:----"I r .i' I

MPSoC Mlcroprocessors

* STI (Sony, Toshiba, IBM) Cell

-9 Cores / 10 Execution threads

F=4.6 GHz @V =1.3v
- Covers 85% of die

P =50~ 80W (estimated)
512KB L2 Cache

Die Size: 221 mm?

234M Transistors

90nm SOl technology (Low K,
8 layers, Cu interconnect)

6.4GT/s I/0 interface
4 x 128 bit internal bus (ring)

*» Trend: multiple mixed processors on dle, bus communlcatlon

Intd shared cache

Source ST1 - K. Chang & al, ISSCC 2005 21



Industry Examples

Summary

* Microprocessor industry seems to lean towards
similar MPSoC models:

Multiple leveraged processors on die

Bigger shared caches

On-die . communication between processors

High-speed 1/0 links

* Impact/on clocks
- Global clocking solutions are not likely
- Modularity is required
- 'Die size is overwhelming
- Multiple smaller, “simpler” clock domains
- Easier local design, better skew and jitter control
y - Global communication is still a challenge
InU‘ - Intra-domain communication
- Synchronous, asynchronous?

22



Industry Examples

Summary

* Microprocessor industry seems to lean towards
similar MPSoC models:

Multiple leveraged processors on die

Bigger shared caches

On-die . communication between processors

High-speed 1/0 links

* Impact/on power
- Power envelope is not increasing!

- Multiple clock domains allow for more power control
- More dynamic voltage/frequency scaling
- More meticulous clock gating schemes
- Power management becomes paramount
- Needs to monitor temperature, core activity, load balancing...

in'l'e'. - Multiple power domains should be next...

23



Industry Examples

Summary

Clock distribution coverage area growth
- More modular and efficient solutions required
Collapse of single-clock paradigm
- Multiple clock domain partitioning advantage
- Data transfer between domain complication
Static voltage and frequency approach fracture
- Voltage and frequency scaling necessary to reduce power
- Efficient power management and leakage control required
- Dynamic clock generation scheme emergence
Integration of power management on die required
- Multitude of sensors (temperature, voltage, activity...)

- Control of power and frequency levels globally, regionally,
possibly locally

intal
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Future Directions

Clock Distribution

* Multiple clock domains
- Low skew and jitter ALWAYS a must

- Clock modeling requires more accuracy

- Within-die variations, inductance, crosstalk,
electromigration, self-heat, ...

- Floor plan modularity
- Think adding/removing cores seamlessly!

- Hierarchical clock partitioning
- Reduce global clock and possibly relax its requirements
- Generate “locally”-used clock “locally”
- Implement clock domain deskewing techniques

- Bound clock problem into simple, reliable, efficient
domains

26



Future Directions

Clock Distribution

* Multiple clock domains

- Global clock interconnect is challenged
- Exotic options are being investigated

Clock Tuning 3D Wafer Stacking RF/Optical Networks

1 .
.‘urulfw H-Tree
and Buffer Waveguide

* Data transfer between clock domains

- Latency and determinism issues
- GSLS/GALS/GALA options?

Source: J.'Schutz, C. Webb, “Scalable|x86 ICPU design for 90nm”, ISSCC 2004
K. Chen & al., “Comparison ofi Conventional, 3-D, Optical, and RF Interconnects for On-Chip Clock Distribution”
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Future Directions

Asynchronous:Logic

* Advantages...

- Performance
- Potentially higher
- Not limited by slowest component

- Power
- Potentially much lower
- No clock power overhead
- Inactive components consume “only” leakage power
- Better EMI
- Design Complexity
- Easier circuit synthesis
- Possibly more scalable (no timing issues)

- Synchronization with clock domains requires no clock
relationship (handshaking, flow control)

tal
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Future Directions

Asynchronous:Logic

* Disadvantages

- Performance
- Area penalty for similar functionality

- Power
- Extra components consume power

- Design Complexity
- Potentially more complex circuit design
- Vulnerable to circuit glitches

- Test and debug more complex
- Lack of CAD Tools

e Asynchronous products exist!

- Embedded processors from Philips Semiconductors,
Motorola...

tal
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Future Directions

Clock:and Power Convergence

e Dynamic voltage and frequency scaling (DVS)
- Graphical representation

Maximal | Minimal
Performance | | Performance | Performance

Loss f Loss

Basic power management Coarse power management Optimal power management

Static frequency scaling Static frequency scaling Dynamic frequency scaling

30



Future Directions

Clock:and Power Convergence

e Dynamic voltage and frequency scaling (DVS)

- Dynamic frequency control
- PLL-based schemes are not optimal for such tasks
- More digital solutions start being proposed (Intel
ltanium’s Digital Frequency Divider)
- Dynamic power management
- Requires early micro-architectural estimation
-///lPower state definition (on, idle, off, ...)
- System complexity increases with number of parameters
- Number of cores, threads, ...
- 'Additional on-die logic blocks

- Microcontroller
- Sensors of all kinds

-/ Close interaction with clock system

o - Powering off functional units, cores, ...
Ini'el - Slowing down functional units, cores, ...
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Future Directions

Clock:and Power Convergence

¢ Intel® Itanium® Montecito - Clock system architecture

- Each core split into 3 clock domains on variable power supply

- Each domain controlled by Digital Frequency Divider (DFD)
generating low-skew variable-frequency clocks; fed by central PLL
and aligned through phase detectors

Clock System - Regional Voltage Dgtector (RVD):
Architecture ! supply voltage monitor
: - Second level clock buffer (SLCB):

Balanced

Tree Clock digitally controlled delay buffer

Distribution

for active deskewing

- Regional Active Deskew (RAD):
phase comparators monitoring
and adjusting delay difference

8 between SLCBs

8 - Clock Vernier Device (CVD):

2 digitally controlled delay buffer

Source: INTEL - T. Fisher & al., ISSCC 2005 32



Future Directions

Clock:and Power Convergence

¢ |[ntel® Itanium® Montecito - Power management (Foxton)
- Dynamic voltage-scaling power management system
- 4 on-die sensors
- On-die microcontroller
- Power and temperature measurement
- Voltage and frequency modulation
- /8us power/temperature sampling interval
- Embedded firmware
- Power, temperature, or calibration measurements

- Power: closed-loop power control and system stability check

- Temperature: thermal sensor readout (junction temperature below
90° C monitoring) and power-control communication

- Calibration: power-measurement accuracy check

Source: INTEL - C. Poirier & al., ISSCC 2005
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Future Directions

Clock:and Power Convergence

 |[ntel® Itanium® Montecito - Noise management

- Voltage to Frequency Converter (VFC): dynamic core frequency
adjustment as a function of voltage

- VFC locks onto and tracks local supply voltage with RVD
- 4 RVDs per DFD controlling VFC
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Summary

* Clock and power designs trends
- Increased transistor density, larger microprocessors
- GHz+ frequencies, shrinkage of useful cycle time and margins
- High-quality clock desigh ALWAYS aimed towards low skew,
low jitter, low power
» Convergence of clock and power designs

- Multiple clock domains (synchronous or not)
- Hierarchical clock complexity
- Dynamic voltage and frequency scaling
- 'Dynamic frequency generation systems
- Dynamic power management systems
- Close interaction for maximum performance

tal
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