
MPSoC’05

Dr. Ahmed Amine JERRAYA
TIMA Laboratory

46 Avenue Felix Viallet
38031 Grenoble Cedex France

Tel: +33 476 57 47 59
Fax: +33 476 47 38 14

Email: Ahmed.Jerraya@imag.fr

HW-SW Interfaces CoDesign
for Multi-Processor SoC

HW-SW Interfaces CoDesign
for Multi-Processor SoC

MPSoC’05 - 2Ahmed A. Jerraya

Defining HW-SW Interfaces
Application SW Designer: A set of system
calls used to hide the underlying execution
platform. Also Called Programming Model
HW designer: A set of registers, control
signals and more sophisticated adaptors
to link CPU to HW subsystems.
System SW designer: Low level SW
implementation of the programming Model
for a given HW architecture.
Assumes HW is ready de start low level
SW design
CPU is the ultimate HW-SW Interface
SOC requirements

g HW-SW interfaces tradeoff
g Programming model Abstracts both

HW and SW interfaces in addition to
CPU

Sequential SW program
…
Call HW (x, y, z)

x y z
HW function

wait start
…

API

CPU Bus
HW-Adaptation

CPU (local Architecture)
SW Adaptation

Start done x y z

data@CTRL
HW-SW

Interfaces

MPSoC’05 - 3Ahmed A. Jerraya

Classical SW design flow to interface HW

Application
Programming

Model (API)

Architecture

Program
+ API Calls

Compiler

Code+Calls

Linker

Executable
Code

Sys.lib
MMAP

User.lib

Programming Model:
Abstract HW at Different level

Discontinuities:
Compilation: Generally ignore

the CPU environment (Interrupts,
Complex I/O)

Sys.lib: adapt for different HW

MMAP: Adapt to different CPU-
memory architecture

User.lib: to make the flow
efficient for the application

MPSoC’05 - 4Ahmed A. Jerraya

Parallel Programming Models for SW Design

concurrency
decomposition

mapping
communication

synchronization
Interconnection

More MPLICIT More
Explicit

Interface

Explicit concurrency, decomposition, mapping, communication,
synchronization, Interconnection and CPU; Implicit MMAP
g ISA SW

Explicit concurrency, decomposition, mapping, communication,
synchronization, Interconnection; Implicit CPU
g Programming with OS services e.g. POSIX threads.

Explicit concurrency, decomposition, mapping, communication,
synchronization; Implicit Interconnection and Interface
g MPI, TLM Message, thread package, concurrent C

Explicit concurrency, decomposition, mapping; Implicit
communication, synchronization, Interconnection and Interface
g SDL, compositional C++

MPSoC’05 - 5Ahmed A. Jerraya

Joint HW/SW Interfaces abstraction requires
different programming Models

TLM
Messages MPI

OS Organisation CPU
implementation

Local CPU SS
Architecture

More
IMPLICIT

More
Explicit

Physical
adressing

All explicit
g Bin SW, RTL CPU + RTL HW

Implicit Physical addressing (MMAP, Booting address, …)
g MAXSIM: SW Bin, CPU ISS cycle accurate with explicit

Memory, TLM or RTL HW

Implicit CPU organization
g BCA: SW Bin, BFM interface or CPU ISA simulation, TLM or

RTL HW

Implicit : CPU SS organization
g SystemC 3.0: SW Native, BFM interface or CPU SS

simulation, TLM or RTL HW

MPSoC’05 - 6Ahmed A. Jerraya

Virtual IPVirtual IPVirtual ProcessorVirtual Processor

HW/SW Interfaces CoDesign Flow
System specification is a
virtual architecture: virtual
modules using specific
programming models
connected through an
execution environment.

System Specification

Execution environment (e.g. TLM Cosimulation)

Virtual ProcessorSW component

SW
task 2

SW
task 1

Virtual IPHW component

HW
block 2

HW
block 1

HW/SW interface codesign
requires a unified model for
HW, SW and CPU sub-
system. Communication interconnect (e.g. NoC)

HW interface
sub-system

(HW wrapper)

HW
component

HW interface
sub-system

(HW wrapper)

CPU
sub-system

SW interface
sub-system

(SW wrapper)

SW
components

(Tasks)

Architecture
implementation:
heterogeneous components
and sophisticated HW/SW
interfaces

…

API SW comp.

API CPU

Basic SW interface component

Basic HW interface component

…
API HW comp.

API network

Basic Mixed component

…

API CPU.

API network

MPSoC’05 - 7Ahmed A. Jerraya

Conclusion
Classical Programming models separate HW and

SW interfacs

SoC Programming Model abstract CPU in addition
to both HW and SW

Existing HW/SW interface Models

Cosimulation execute SW as a HW module

Formal methods abstract both SW and HW to a
single model, exclude CPU

HW/SW Interfaces codesign requires to invent a
Unified model to abstract HW, SW and CPU [Petrot]

MPSoC’05 - 8Ahmed A. Jerraya

