

Bridging the gap between semiconductor technology and design: a memory case study

Rudy Lauwereins

Vice-President IMEC, Belgium Professor at Katholieke Universiteit Leuven, Belgium

© imec 2005

... beyond 100nm many technology issues become increasingly important

Transistor leakage current increase power consumption

Temperature driven dynamic process variations

100.0							
100.0							
100.0							
100.0							
100.0							
100.0							
100.0							
100.0							
100.0							
100.0							
100.0							
99.9							
99.9							
99.9							
99.9							
99.9							
99.9							
99.9							
99.9							
99.9							
	-						

Increased static process variations with scaling

Relative spread of capacitance due to technology

⇒Relative spread in capacitance compared to 130 nm technology node (for dense wiring): increase of factor 2 in 65 nm node, factor 3.5 in 32 nm node

⇒This is including the effect of CMP and roughness variation

Capacitance and resistivity of local wires increases with scaling

Memories dominate power consumption in data-dominated applications

The current focus of the TAD program is on SRAMs:

SRAM is key element (energy and delay) in system (stand alone or embedded)

Easy to model because regular and predictable topology (standard cell design with Place&Route in the flow is stochastic)

Advantage for critical lithography and as technology driver (Layout rules are typically smaller than rest of components)

Key element in new approach: "knobs" in memory to create Pareto trade-offs

IMEC's concept combines 100% (parametric) yield with variation tolerance

IMEC's concept combines 100% (parametric) yield with variation tolerance

A moderate 10% variation for one transistor leads to 40% variation in access time for a 1KB memory

Sigma-based design improves (parametric) yield at the cost of performance-power overhead (design margins)

Sigma-based design badly scales: new silicon nodes have higher variation and hence more overhead needed

IMEC's concept combines 100% yield with variation tolerance

1.5

RT

spec.

System requirements: run-time Pareto controller and calibration loop

Calibration (rarely): Per memory:

- 1. Apply Test vectors
- 2. Measure E/D
- 3. Overwrite Pareto tables

Normal operation:

- 1. Determine Pareto operating point for all mems in Pareto controller
- 2. Steer configuration knobs in memories

Approach is applied to the memory organisation in a DAB application

(Power) optimized communication network (with switches)

Base Implementation: 7 x 1KByte (16+32bit)+ 2 x 8KByte SRAMs with two configurations "knobs" each for Pareto trade-offs (low-energy and high-performance)

DEMO - DAB: illustration of system level adaptation to process variability

Problem:

- Small on-chip SRAM is critical component (L1-memories)
- Impact process variability at SRAM level much more dramatic than transistor (from 10% to 50%)
- Industry \rightarrow sigma-based design minimizes variability but trade-off yield and generates overhead (critical for L1-memories)

Alternative:

- Use best case SRAM design tolerating variability with 100% yield (functionality still tested)
- Provide configuration "knobs" offering wide range of energy/delay trade-offs
- Let system compensate for eventual drift in variability at architecture level (system timing and not clock cycle based)

Feasibility:

Concept demonstrated in DAB receiver at SPICE level

SEEDS FOR TOMORROW'S WORLD IMECNOLOGY

