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... beyond 100nm many technology issues
become increasingly important

Transistor leakage current _
increase power consumption Temperature driven

Vdd dynamic process variations
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Memories dominate power consumption in
data-dominated applications

Embedded memories in

Data path wireless mu_Itlmedla
P SoCs are dominant for
power and delay
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The current focus of the TAD program is on SRAMs:

SRAM is key element (energy and delay) in system (stand alone or
embedded)

Easy to model because regular and predictable topology (standard cell
design with Place&Route in the flow is stochastic)

Advantage for critical lithography and as technology driver (Layout rules
are typically smaller than rest of components)
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Key element in new approach: “knobs” in
memory to create Pareto trade-offs
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different parts of
memory architecture
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liEls IMEC’s concept combines 100%
e (parametric) yield with variation tolerance
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IMEC’s concept combines 100%
(parametric) yield with variation tolerance

— A moderate 10% variation for one transistor leads to

N ¢ |
§ w1 40% variation in access time for a 1KB memory
&\\ |

Sigma-based design improves (parametric) yield at the

o cost of performance-power overhead (design margins)
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e IMEC’s concept combines 100% yield with

variation tolerance
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A moderate 10% variation for one transistor leads to
40% variation in access time for a 1KB memory

Sigma-based design leads to low yield and overhead

Sigma-based design badly scales: new silicon nodes
have higher variation and hence more overhead

Better solution: just live with the speed you get & for
those falling outside the spec, switch to a different/faster
implementation, e.g. by using an additional driver step
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System requirements: run-time Pareto
controller and calibration loop

Configuration " Memory ||
| 4 A
Vector Data
s/addr
Pareto ) pata] Fje
Controller norm%
| Switch
Test .|Monitors
Vectors | Vectors Energy/delay
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Calibration (rarely): Per

—

memory:
Apply Test vectors
Measure E/D

Overwrite Pareto
tables

Normal operation:

1.

Determine Pareto
operating point for all
mems in Pareto
controller

Steer configuration
knobs in memories
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Approach is applied to the memory
organisation in a DAB application

4x 256w*32b | H 3x 512w*16b | ] 2x 4096w*16b
low-enegy low-energy low-energy
high-perf high-perf high-perf
[ UI' [ . - |/ =
addr data addr data addr data

(Power) optimized communication network (with
switches)

Base Implementation: 7 x 1KByte (16+32bit)+ 2 x 8KByte
SRAMs with two configurations “knobs™ each for Pareto trade-offs
(low-energy and high-performance)
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DEMO - DAB: illustration of system
level adaptation to process variability
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Conclusions

Problem:
m Small on-chip SRAM is critical component (L1-memories)

m Impact process variability at SRAM level much more dramatic than
transistor (from 10% to 50%)

m Industry = sigma-based design minimizes variability but trade-off
yield and generates overhead (critical for L1-memories)

Alternative:

m Use best case SRAM design tolerating variability with 100% yield
(functionality still tested)

m Provide configuration “knobs” offering wide range of energy/delay
trade-offs

m Let system compensate for eventual drift in variability at architecture
level (system timing and not clock cycle based)

Feasibility:
m Concept demonstrated in DAB receiver at SPICE level
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